285 research outputs found

    Performance of two-stage fan having low-aspect-ratio first-stage rotor blading

    Get PDF
    The NASA two stage fan was tested with a low aspect ratio first stage rotor having no midspan dampers. At design speed the fan achieved an adiabatic design efficiency of 0.846, and peak efficiencies for the first stage and rotor of 0.870 and 0.906, respectively. Peak efficiency occurred very close to the stall line. In an attempt to improve stall margin, the fan was retested with circumferentially grooved casing treatment and with a series of stator blade resets. Results showed no improvement in stall margin with casing treatment but increased to 8 percent with stator blade reset

    Aerofoils and Aerofoil Structural Combinations

    Get PDF
    Report presents results of wind tunnel tests of cambered aerofoils and body-wing combinations used for biplanes. Aerodynamic characteristics including drag, lift-drift ratio and stability derivatives are given

    The hepatic transcriptome in human liver disease

    Get PDF
    The transcriptome is the mRNA transcript pool in a cell, organ or tissue with the liver transcriptome being amongst the most complex of any organ. Functional genomics methodologies are now being widely utilized to study transcriptomes including the hepatic transcriptome. This review outlines commonly used methods of transcriptome analysis, especially gene array analysis, focusing on publications utilizing these methods to understand human liver disease. Additionally, we have outlined the relationship between transcript and protein expressions as well as summarizing what is known about the variability of the transcriptome in non-diseased liver tissue. The approaches covered include gene array analysis, serial analysis of gene expression, subtractive hybridization and differential display. The discussion focuses on primate whole organ studies and in-vitro cell culture systems utilized. It is now clear that there are a vast number research opportunities for transcriptome analysis of human liver disease as we attempt to better understand both non-diseased and disease hepatic mRNA expression. We conclude that hepatic transcriptome analysis has already made significant contributions to the understanding of human liver pathobiology

    Social effects of territorial neighbours on the timing of spring breeding in North American red squirrels

    Get PDF
    This is the author accepted manuscript. The final version is available from Wiley via the DOI in this recordOrganisms can affect one another’s phenotypes when they socially interact. Indirect genetic effects occur when an individual’s phenotype is affected by genes expressed in another individual. These heritable effects can enhance or reduce adaptive potential, thereby accelerating or reversing evolutionary change. Quantifying these social effects is therefore crucial for our understanding of evolution, yet estimates of indirect genetic effects in wild animals are limited to dyadic interactions. We estimated indirect phenotypic and genetic effects, and their covariance with direct effects, for the date of spring breeding in North American red squirrels (Tamiasciurus hudsonicus) living in an array of territories of varying spatial proximity. Additionally, we estimated indirect effects and the strength of selection at low and high population densities. Social effects of neighbours on the date of spring breeding were different from zero at high population densities but not at low population densities. Indirect phenotypic effects accounted for a larger amount of variation in the date of breeding than differences attributable to the among-individual variance, suggesting social interactions are important for determining breeding dates. The genetic component to these indirect effects was however not statistically significant. We therefore showcase a powerful and flexible method that will allow researchers working in organisms with a range of social systems to estimate indirect phenotypic and genetic effects, and demonstrate the degree to which social interactions can influence phenotypes, even in a solitary species

    Reduced contextually induced muscle thermogenesis in rats with calorie restriction and lower aerobic fitness but not monogenic obesity

    Get PDF
    We have previously identified predator odor as a potent stimulus activating thermogenesis in skeletal muscle in rats. As this may prove relevant for energy balance and weight loss, the current study investigated whether skeletal muscle thermogenesis was altered with negative energy balance, obesity propensity seen in association with low intrinsic aerobic fitness, and monogenic obesity. First, weight loss subsequent to three weeks of 50% calorie restriction suppressed the muscle thermogenic response to predator odor. Next, we compared rats bred based on artificial selection for intrinsic aerobic fitness—high- and low-capacity runners (HCR, LCR)—that display robust leanness and obesity propensity, respectively. Aerobically fit HCR showed enhanced predator odor-induced muscle thermogenesis relative to the less-fit LCR. This contrasted with the profound monogenic obesity displayed by rats homozygous for a loss of function mutation in Melanocortin 4 receptor (Mc4rK314X/K314X rats), which showed no discernable deficit in thermogenesis. Taken together, these data imply that body size or obesity per se are not associated with deficient muscle thermogenesis. Rather, the physiological phenotype associated with polygenic obesity propensity may encompass pleiotropic mechanisms in the thermogenic pathway. Adaptive thermogenesis associated with weight loss also likely alters muscle thermogenic mechanisms.</p

    Sensory phenotypes in complex regional pain syndrome and chronic low back pain-indication of common underlying pathomechanisms

    Get PDF
    INTRODUCTION First-line pain treatment is unsatisfactory in more than 50% of chronic pain patients, likely because of the heterogeneity of mechanisms underlying pain chronification. OBJECTIVES This cross-sectional study aimed to better understand pathomechanisms across different chronic pain cohorts, regardless of their diagnoses, by identifying distinct sensory phenotypes through a cluster analysis. METHODS We recruited 81 chronic pain patients and 63 age-matched and sex-matched healthy controls (HC). Two distinct chronic pain cohorts were recruited, ie, complex regional pain syndrome (N = 20) and low back pain (N = 61). Quantitative sensory testing (QST) was performed in the most painful body area to investigate somatosensory changes related to clinical pain. Furthermore, QST was conducted in a pain-free area to identify remote sensory alterations, indicating more widespread changes in somatosensory processing. RESULTS Two clusters were identified based on the QST measures in the painful area, which did not represent the 2 distinct pain diagnoses but contained patients from both cohorts. Cluster 1 showed increased pain sensitivities in the painful and control area, indicating central sensitization as a potential pathomechanism. Cluster 2 showed a similar sensory profile as HC in both tested areas. Hence, either QST was not sensitive enough and more objective measures are needed to detect sensitization within the nociceptive neuraxis or cluster 2 may not have pain primarily because of sensitization, but other factors such as psychosocial ones are involved. CONCLUSION These findings support the notion of shared pathomechanisms irrespective of the pain diagnosis. Conversely, different mechanisms might contribute to the pain of patients with the same diagnosis

    Sensory phenotypes in complex regional pain syndrome and chronic low back pain-indication of common underlying pathomechanisms.

    Get PDF
    INTRODUCTION First-line pain treatment is unsatisfactory in more than 50% of chronic pain patients, likely because of the heterogeneity of mechanisms underlying pain chronification. OBJECTIVES This cross-sectional study aimed to better understand pathomechanisms across different chronic pain cohorts, regardless of their diagnoses, by identifying distinct sensory phenotypes through a cluster analysis. METHODS We recruited 81 chronic pain patients and 63 age-matched and sex-matched healthy controls (HC). Two distinct chronic pain cohorts were recruited, ie, complex regional pain syndrome (N = 20) and low back pain (N = 61). Quantitative sensory testing (QST) was performed in the most painful body area to investigate somatosensory changes related to clinical pain. Furthermore, QST was conducted in a pain-free area to identify remote sensory alterations, indicating more widespread changes in somatosensory processing. RESULTS Two clusters were identified based on the QST measures in the painful area, which did not represent the 2 distinct pain diagnoses but contained patients from both cohorts. Cluster 1 showed increased pain sensitivities in the painful and control area, indicating central sensitization as a potential pathomechanism. Cluster 2 showed a similar sensory profile as HC in both tested areas. Hence, either QST was not sensitive enough and more objective measures are needed to detect sensitization within the nociceptive neuraxis or cluster 2 may not have pain primarily because of sensitization, but other factors such as psychosocial ones are involved. CONCLUSION These findings support the notion of shared pathomechanisms irrespective of the pain diagnosis. Conversely, different mechanisms might contribute to the pain of patients with the same diagnosis

    A role for the tfs3 ICE-encoded type IV secretion system in pro-inflammatory signalling by the Helicobacter pylori Ser/Thr kinase, CtkA

    Get PDF
    Two distinct type IV secretion systems (T4SSs) can be identified in certain Helicobacter pylori strains, encoded on mobile genetic elements termed tfs3 and tfs4. Although their function remains unknown, both have been implicated in clinical outcomes of H. pylori infection. Here we provide evidence that the Tfs3 T4SS is required for activity of the pro-inflammatory Ser/Thr kinase protein, CtkA, in a gastric epithelial cell infection model. Previously, purified recombinant CtkA protein has been shown to upregulate NF-kappaB signalling and induce TNF-alpha and IL-8 cytokine secretion from cultured macrophages suggesting that it may potentiate the H. pylori-mediated inflammatory response. In this study, we show that CtkA expressed from its native host, H. pylori has a similar capacity for stimulation of a pro-inflammatory response from gastric epithelial cells. CtkA interaction was found to be dependent upon a complement of tfs3 T4SS genes, but independent of the T4SSs encoded by either tfs4 or the cag pathogenicity island. Moreover, the availability of CtkA for host cell interaction was shown to be conditional upon the carboxyl-terminus of CtkA, encoding a putative conserved secretion signal common to other variably encoded Tfs3 proteins. Collectively, our observations indicate a role for the Tfs3 T4SS in CtkA-mediated pro-inflammatory signalling by H. pylori and identify CtkA as a likely Tfs3 T4SS secretion substrate

    Adenosine and lymphocyte regulation

    Get PDF
    Adenosine is a potent extracellular messenger that is produced in high concentrations under metabolically unfavourable conditions. Tissue hypoxia, consequent to a compromised cellular energy status, is followed by the enhanced breakdown of ATP leading to the release of adenosine. Through the interaction with A2 and A3 membrane receptors, adenosine is devoted to the restoration of tissue homeostasis, acting as a retaliatory metabolite. Several aspects of the immune response have to be taken into consideration and even though in general it is very important to dampen inflammation, in some circumstances, such as the case of cancer, it is also necessary to increase the activity of immune cells against pathogens. Therefore, adenosine receptors that are defined as ‘sensors–of metabolic changes in the local tissue environment may be very important targets for modulation of immune responses and drugs devoted to regulating the adenosinergic system are promising in different clinical situations

    Histoplasma capsulatum Encodes a Dipeptidyl Peptidase Active against the Mammalian Immunoregulatory Peptide, Substance P

    Get PDF
    The pathogenic fungus Histoplasma capsulatum secretes dipeptidyl peptidase (Dpp) IV enzyme activity and has two putative DPPIV homologs (HcDPPIVA and HcDPPIVB). We previously showed that HcDPPIVB is the gene responsible for the majority of secreted DppIV activity in H. capsulatum culture supernatant, while we could not detect any functional contribution from HcDPPIVA. In order to determine whether HcDPPIVA encodes a functional DppIV enzyme, we expressed HcDPPIVA in Pichia pastoris and purified the recombinant protein. The recombinant enzyme cleaved synthetic DppIV substrates and had similar biochemical properties to other described DppIV enzymes, with temperature and pH optima of 42°C and 8, respectively. Recombinant HcDppIVA cleaved the host immunoregulatory peptide substance P, indicating the enzyme has the potential to affect the immune response during infection. Expression of HcDPPIVA under heterologous regulatory sequences in H. capsulatum resulted in increased secreted DppIV activity, indicating that the encoded protein can be expressed and secreted by its native organism. However, HcDPPIVA was not required for virulence in a murine model of histoplasmosis. This work reports a fungal enzyme that can function to cleave the immunomodulatory host peptide substance P
    • …
    corecore