78 research outputs found

    Geometric optics of whispering gallery modes

    Full text link
    Quasiclassical approach and geometric optics allow to describe rather accurately whispering gallery modes in convex axisymmetric bodies. Using this approach we obtain practical formulas for the calculation of eigenfrequencies and radiative Q-factors in dielectrical spheroid and compare them with the known solutions for the particular cases and with numerical calculations. We show how geometrical interpretation allows expansion of the method on arbitrary shaped axisymmetric bodies.Comment: 12 pages, 6 figures, Photonics West 2006 conferenc

    Fundamental thermal fluctuations in microspheres

    Get PDF
    We present a theoretical analysis and the results of measurements of thermorefractive noise in microcavities. These measurements may be considered direct observations of fundamental fluctuations of temperature in solid media. Our experimentally measured noise spectra are in agreement with our theoretical model

    Photonic chip based optical frequency comb using soliton induced Cherenkov radiation

    Full text link
    By continuous wave pumping of a dispersion engineered, planar silicon nitride microresonator, continuously circulating, sub-30fs short temporal dissipative solitons are generated, that correspond to pulses of 6 optical cycles and constitute a coherent optical frequency comb in the spectral domain. Emission of soliton induced Cherenkov radiation caused by higher order dispersion broadens the spectral bandwidth to 2/3 of an octave, sufficient for self referencing, in excellent agreement with recent theoretical predictions and the broadest coherent microresonator frequency comb generated to date. In a further step, this frequency comb is fully phase stabilized. The ability to preserve coherence over a broad spectral bandwidth using soliton induced Cherenkov radiation marks a critical milestone in the development of planar optical frequency combs, enabling on one hand application in e.g. coherent communications, broadband dual comb spectroscopy and Raman spectral imaging, while on the other hand significantly relaxing dispersion requirements for broadband microresonator frequency combs and providing a path for their generation in the visible and UV. Our results underscore the utility and effectiveness of planar microresonator frequency comb technology, that offers the potential to make frequency metrology accessible beyond specialized laboratories.Comment: Changes: - Added data (new Fig.4) on the first full phase stabilization of a dissipative Kerr soliton (or dissipative cavity soliton) in a microresonator - Extended Fig. 8 in the SI - Introduced nomenclature of dissipative Kerr solitons - Minor other change

    Generation of platicons and frequency combs in optical microresonators with normal GVD by modulated pump

    Full text link
    We demonstrate that flat-topped dissipative solitonic pulses, platicons, and corresponding frequency combs can be excited in optical microresonators with normal group velocity dispersion using either amplitude modulation of the pump or bichromatic pump. Soft excitation may occur in particular frequency range if modulation depth is large enough and modulation frequency is close to the free spectral range of the microresonator.Comment: 10 pages, 4 figures, to appear in EP

    Dynamics of platicons due to third-order dispersion

    Full text link
    Dynamics of platicons caused by the third-order dispersion is studied. It is shown that under the influence of the third-order dispersion platicons obtain angular velocity depending both on dispersion and on detuning value. A method of tuning of platicon associated optical frequency comb repetition rate is proposed.Comment: 11 pages, 5 figure

    Microtorus: a High Finesse Microcavity with Whispering-Gallery Modes

    Get PDF
    We have demonstrated a 165 micron oblate spheroidal microcavity with free spectral range 383.7 GHz (3.06nm), resonance bandwidth 25 MHz (Q ~ 10^7) at 1550nm, and finesse F > 10^4. The highly oblate spheroidal dielectric microcavity combines very high Q-factor, typical of microspheres, with vastly reduced number of excited whispering-gallery (WG) modes (by two orders of magnitude). The very large free spectral range in the novel microcavity - few hundred instead of few GigaHertz in typical microspheres - is desirable for applications in spectral analysis, narrow-linewidth optical and RF oscillators, and cavity QED.Comment: 11 pages, 3 figure

    Thermal noises and noise compensation in high-reflection multilayer coating

    Full text link
    Thermal fluctuations of different origin in the substrate and in the coating of optical mirrors produce phase noise in the reflected wave. This noise determines the ultimate stabilization capability of high-Q cavities used as a reference system. In particular this noise is significant in interferometric laser gravitational wave antennas. It is shown that simple alteration of a mirror multilayer coating may provide suppression of phase noise produced by thermorefractive, thermoelastic, photothermal and thermoradiation induced fluctuations in the coating.Comment: 10 pages, 5 figure
    • …
    corecore