136 research outputs found
High prevalence of extrapyramidal signs and symptoms in a group of Italian dental technicians
This is an Open Access article distributed under the terms of the Creative Commons Attribution Licens
In Vitro Aggregation Assays for the Characterization of \u3b1-synuclein Prion-Like Properties
Aggregation of \u3b1-synuclein plays a crucial role in the pathogenesis of synucleinopathies, a group of neurodegenerative diseases including Parkinson disease (PD), dementia with Lewy bodies (DLB), diffuse Lewy body disease (DLBD) and multiple system atrophy (MSA). The common feature of these diseases is a pathological deposition of protein aggregates, known as Lewy bodies (LBs) in the central nervous system. The major component of these aggregates is \u3b1-synuclein, a natively unfolded protein, which may undergo dramatic structural changes resulting in the formation of \u3b2-sheet rich assemblies. In vitro studies have shown that recombinant \u3b1-synuclein protein may polymerize into amyloidogenic fibrils resembling those found in LBs. These aggregates may be uptaken and propagated between cells in a prion-like manner. Here we present the mechanisms and kinetics of \u3b1-synuclein aggregation in vitro, as well as crucial factors affecting this process. We also describe how PD-linked \u3b1-synuclein mutations and some exogenous factors modulate in vitro aggregation. Furthermore, we present a current knowledge on the mechanisms by which extracellular aggregates may be internalized and propagated between cells, as well as the mechanisms of their toxicity. \ua9 2014 Landes Bioscience
Neurodegenerative Diseases: An Overview of Environmental Risk Factors
The population of the United States is aging, and an ever-increasing number of Americans are afflicted with neurodegenerative diseases. Because the pathogenesis of many of these diseases remains unknown, we must consider that environmental factors may play a causal role. This review provides an overview of the epidemiologic evidence for environmental etiologies for neurodegenerative diseases such as Alzheimer disease, Parkinson disease, parkinsonian syndromes (multiple system atrophy and progressive supranuclear palsy), and amyotrophic lateral sclerosis. Epidemiologic evidence for an association between environmental agentsâ exposure and neurodegenerative diseases is not conclusive. However, there are indications that there may be causal links, and the need for more research is obvious
Occupational risk factors for Parkinson's disease: a case-control study in Japan
<p>Abstract</p> <p>Background</p> <p>The evidence for associations between occupational factors and the risk of Parkinson's disease (PD) is inconsistent. We assessed the risk of PD associated with various occupational factors in Japan.</p> <p>Methods</p> <p>We examined 249 cases within 6 years of onset of PD. Control subjects were 369 inpatients and outpatients without neurodegenerative disease. Information on occupational factors was obtained from a self-administered questionnaire. Relative risks of PD were estimated using odds ratios (ORs) and 95% confidence intervals (CIs) based on logistic regression. Adjustments were made for gender, age, region of residence, educational level, and pack-years of smoking.</p> <p>Results</p> <p>Working in a professional or technical occupation tended to be inversely related to the risk of PD: adjusted OR was 0.59 (95% CI: 0.32-1.06, <it>P </it>= 0.08). According to a stratified analysis by gender, the decreased risk of PD for persons in professional or technical occupations was statistically significant only for men. Adjusted ORs for a professional or technical occupation among men and women were 0.22 (95% CI: 0.06-0.67) and 0.99 (0.47-2.07), respectively, and significant interaction was observed (<it>P </it>= 0.048 for homogeneity of OR). In contrast, risk estimates for protective service occupations and transport or communications were increased, although the results were not statistically significant: adjusted ORs were 2.73 (95% CI: 0.56-14.86) and 1.74 (95% CI: 0.65-4.74), respectively. No statistical significance was seen in data concerning exposure to occupational agents and the risk of PD, although roughly a 2-fold increase in OR was observed for workers exposed to stone or sand.</p> <p>Conclusion</p> <p>The results of our study suggest that occupational factors do not play a substantial etiologic role in this population. However, among men, professional or technical occupations may decrease the risk of PD.</p
Investigating Bacterial Sources of Toxicity as an Environmental Contributor to Dopaminergic Neurodegeneration
Parkinson disease (PD) involves progressive neurodegeneration, including loss of dopamine (DA) neurons from the substantia nigra. Select genes associated with rare familial forms of PD function in cellular pathways, such as the ubiquitin-proteasome system (UPS), involved in protein degradation. The misfolding and accumulation of proteins, such as α-synuclein, into inclusions termed Lewy Bodies represents a clinical hallmark of PD. Given the predominance of sporadic PD among patient populations, environmental toxins may induce the disease, although their nature is largely unknown. Thus, an unmet challenge surrounds the discovery of causal or contributory neurotoxic factors that could account for the prevalence of sporadic PD. Bacteria within the order Actinomycetales are renowned for their robust production of secondary metabolites and might represent unidentified sources of environmental exposures. Among these, the aerobic genera, Streptomyces, produce natural proteasome inhibitors that block protein degradation and may potentially damage DA neurons. Here we demonstrate that a metabolite produced by a common soil bacterium, S. venezuelae, caused DA neurodegeneration in the nematode, Caenorhabditis elegans, which increased as animals aged. This metabolite, which disrupts UPS function, caused gradual degeneration of all neuronal classes examined, however DA neurons were particularly vulnerable to exposure. The presence of DA exacerbated toxicity because neurodegeneration was attenuated in mutant nematodes depleted for tyrosine hydroxylase (TH), the rate-limiting enzyme in DA production. Strikingly, this factor caused dose-dependent death of human SH-SY5Y neuroblastoma cells, a dopaminergic line. Efforts to purify the toxic activity revealed that it is a highly stable, lipophilic, and chemically unique small molecule. Evidence of a robust neurotoxic factor that selectively impacts neuronal survival in a progressive yet moderate manner is consistent with the etiology of age-associated neurodegenerative diseases. Collectively, these data suggest the potential for exposures to the metabolites of specific common soil bacteria to possibly represent a contributory environmental component to PD
Both Stereoselective (R)- and (S)-1-Methyl-1,2,3,4-tetrahydroisoquinoline Enantiomers Protect Striatal Terminals Against Rotenone-Induced Suppression of Dopamine Release
1-Methyl-1,2,3,4-tetrahydroisoquinoline (1MeTIQ) is present in the human and rodent brain as a mixture of stereospecific (R)- and (S)-1MeTIQ enantiomers. The racemate, (R,S)-1MeTIQ, exhibits neuroprotective activity as shown in the earlier study by the authors, and In addition, it was suggested to play a crucial physiological role in the mammalian brain as an endogenous regulator of dopaminergic activity. In this article, we investigated the influence of stereospecific enantiomers of 1MeTIQ, (R)- and (S)-1MeTIQ (50 mg/kg i.p.) on rotenone-induced (3 mg/kg s.c.) behavioral and neurochemical changes in the rat. In behavioral study, in order to record dynamic motor function of rats, we measured locomotor activity using automated locomotor activity boxes. In biochemical studies, we analyzed in rat striatum the concentration of dopamine (DA) and its metabolites: intraneuronal DOPAC, extraneuronal 3-MT, and final HVA using HPLC with electrochemical detection. Otherwise, DA release was estimated by in vivo microdialysis study. The behavioral study has demonstrated that both acute and repeated (3 times) rotenone administration unimportantly depressed a basic locomotor activity in rat. (R)- and (S)-1MeTIQ stereoisomers (50 mg/kg i.p.) produced a modest behavioral activation both in naïve and rotenone-treated rats. The data from ex vivo neurochemical experiments have shown stereospecificity of 1MeTIQ enantiomers in respect of their effects on DA catabolism. (R)-1MeTIQ significantly increased both the level of the final DA metabolite, HVA (by about 70%), and the rate of DA metabolism (by 50%). In contrast to that, (S)-1MeTIQ significantly depressed DOPAC, HVA levels (by 60 and 40%, respectively), and attenuated the rate of DA metabolism (by about 60%). On the other hand, both the enantiomers increased the concentrations of DA and its extraneuronal metabolite, 3-MT in rat striatum. In vivo microdialysis study has shown that repeated but not acute administration of rotenone produced a deep and significant functional impairment of striatal DA release. Both (R)- and (S)- stereospecific enantiomers of 1MeTIQ antagonized rotenone-induced suppression of DA release; however, the effect of (R)-1MeTIQ was more strongly expressed in microdialysis study. In conclusion, we suggest that both chiral isomers of 1MeTIQ offer neuroprotection against rotenone-induced disturbances in the function of dopaminergic neurons and (R,S)-1MeTIQ will be useful as a drug with marked neuroprotective activity in the brain
Iron Behaving Badly: Inappropriate Iron Chelation as a Major Contributor to the Aetiology of Vascular and Other Progressive Inflammatory and Degenerative Diseases
The production of peroxide and superoxide is an inevitable consequence of
aerobic metabolism, and while these particular "reactive oxygen species" (ROSs)
can exhibit a number of biological effects, they are not of themselves
excessively reactive and thus they are not especially damaging at physiological
concentrations. However, their reactions with poorly liganded iron species can
lead to the catalytic production of the very reactive and dangerous hydroxyl
radical, which is exceptionally damaging, and a major cause of chronic
inflammation. We review the considerable and wide-ranging evidence for the
involvement of this combination of (su)peroxide and poorly liganded iron in a
large number of physiological and indeed pathological processes and
inflammatory disorders, especially those involving the progressive degradation
of cellular and organismal performance. These diseases share a great many
similarities and thus might be considered to have a common cause (i.e.
iron-catalysed free radical and especially hydroxyl radical generation). The
studies reviewed include those focused on a series of cardiovascular, metabolic
and neurological diseases, where iron can be found at the sites of plaques and
lesions, as well as studies showing the significance of iron to aging and
longevity. The effective chelation of iron by natural or synthetic ligands is
thus of major physiological (and potentially therapeutic) importance. As
systems properties, we need to recognise that physiological observables have
multiple molecular causes, and studying them in isolation leads to inconsistent
patterns of apparent causality when it is the simultaneous combination of
multiple factors that is responsible. This explains, for instance, the
decidedly mixed effects of antioxidants that have been observed, etc...Comment: 159 pages, including 9 Figs and 2184 reference
A framework for understanding shared substrates of airway protection
Deficits of airway protection can have deleterious effects to health and quality of life. Effective airway protection requires a continuum of behaviors including swallowing and cough. Swallowing prevents material from entering the airway and coughing ejects endogenous material from the airway. There is significant overlap between the control mechanisms for swallowing and cough. In this review we will present the existing literature to support a novel framework for understanding shared substrates of airway protection. This framework was originally adapted from Eccles' model of cough28 (2009) by Hegland, et al.42 (2012). It will serve to provide a basis from which to develop future studies and test specific hypotheses that advance our field and ultimately improve outcomes for people with airway protective deficits
- âŠ