5,073 research outputs found

    Slipped-mispairing and the evolution of introns

    Full text link
    Introns are regions of non-coding nucleotides which interrupt most eukaryotic genes. Comparison of homologous genes in related species shows that the number and position of introns are usually highly conserved during evolution, but that intron length can change relatively quickly. Detailed comparison of the DNA sequence of introns suggests that a common mechanism for varying length is insertion or deletion caused by `slipped-mispairing' of short, direct repeats during DNA replication.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/25076/1/0000507.pd

    Evolutionary conservation of DNA coding for maternal RNA in sea urchins

    Full text link
    The extent of evolutionary conservation of DNA complimentary to RNA stored in the mature oocyte of the sea urchin has been assessed. To do this, such DNA was hybridized with total genomic DNA of and and the thermal stability of the resultant duplexes was measured by two methods. In the first method, the duplexes were bound to hydroxylapatite and thermally eluted; the difference in thermal stability between homologous and heterologous duplexes averaged 6.9[deg] C in duplicate determinations. In the second experiment, the same hybrids were thermally melted in 2.4M tetraethyl-ammonium chloride, then assayed with S1 nuclease; the difference in thermal stability of homologous and heterologous duplexes was 4.8[deg] C. Either value is significantly lower than the divergence of total single-copy DNA among these species as measured by the same techniques. This demonstrates that DNA sequences complimentary to maternal RNA are conserved during evolution, and thus that a high fraction of them are likely to be physiologically functional.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/24719/1/0000141.pd

    Gas-Surface Dynamics and Profile Evolution during Etching of Silicon

    Get PDF
    Scattering of energetic F atoms on a fluorinated Si surface is studied by molecular beam methods. The energy transfer closely follows hard-sphere collision kinematics. Energy and angular distributions of unreacted F atoms suggest significant multiple-bounce scattering in addition to single-bounce scattering and trapping desorption. An empirical model of the atom-surface interaction dynamics is used in a Monte Carlo simulation of topography evolution during neutral beam etching of Si. Model predictions of profile phenomena are validated by experiments

    The average spacing of restriction enzyme recognition sites in DNA

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/23868/1/0000107.pd

    The flow of the Antarctic circumpolar current over the North Scotia Ridge

    Get PDF
    The transports associated with the Subantarctic Front (SAF) and the Polar Front (PF) account for the majority of the volume transport of the Antarctic Circumpolar Current (ACC). After passing through Drake Passage, the SAF and the PF veer northward over the steep topography of the North Scotia Ridge. Interaction of the ACC with the North Scotia Ridge influences the sources of the Malvinas Current. This ridge is a major obstacle to the flow of deep water, with the majority of the deep water passing through the 3100 m deep gap in the ridge known as Shag Rocks Passage. Volume transports associated with these fronts were measured during the North Scotia Ridge Overflow Project, which included the first extensive hydrographic survey of the ridge, carried out in April and May 2003. The total net volume transport northward over the ridge was found to be . The total net transport associated with the SAF was approximately , and the total transport associated with the PF was approximately . Weddell Sea Deep Water was not detected passing through Shag Rocks Passage, contrary to some previous inferences

    Modification and pathways of Southern Ocean Deep Waters in the Scotia Sea

    Get PDF
    An unprecedented high-quality, quasi-synoptic hydrographic data set collected during the ALBATROSS cruise along the rim of the Scotia Sea is examined to describe the pathways of the deep water masses flowing through the region, and to quantify changes in their properties as they cross the sea. Owing to sparse sampling of the northern and southern boundaries of the basin, the modification and pathways of deep water masses in the Scotia Sea had remained poorly documented despite their global significance. Weddell Sea Deep Water (WSDW) of two distinct types is observed spilling over the South Scotia Ridge to the west and east of the western edge of the Orkney Passage. The colder and fresher type in the west, recently ventilated in the northern Antarctic Peninsula, flows westward to Drake Passage along the southern margin of the Scotia Sea while mixing intensely with eastward-flowing Circumpolar Deep Water (CDW) of the antarctic circumpolar current (ACC). Although a small fraction of the other WSDW type also spreads westward to Drake Passage, the greater part escapes the Scotia Sea eastward through the Georgia Passage and flows into the Malvinas Chasm via a deep gap northeast of South Georgia. A more saline WSDW variety from the South Sandwich Trench may leak into the eastern Scotia Sea through Georgia Passage, but mainly flows around the Northeast Georgia Rise to the northern Georgia Basin. In Drake Passage, the inflowing CDW displays a previously unreported bimodal property distribution, with CDW at the Subantarctic Front receiving a contribution of deep water from the subtropical Pacific. This bimodality is eroded away in the Scotia Sea by vigorous mixing with WSDW and CDW from the Weddell Gyre. The extent of ventilation follows a zonation that can be related to the CDW pathways and the frontal anatomy of the ACC. Between the Southern Boundary of the ACC and the Southern ACC Front, CDW cools by 0.15°C and freshens by 0.015 along isopycnals. The body of CDW in the region of the Polar Front splits after overflowing the North Scotia Ridge, with a fraction following the front south of the Falkland Plateau and another spilling over the plateau near 49.5°W. Its cooling (by 0.07°C) and freshening (by 0.008) in crossing the Scotia Sea is counteracted locally by NADW entraining southward near the Maurice Ewing Bank. CDW also overflows the North Scotia Ridge by following the Subantarctic Front through a passage just east of Burdwood Bank, and spills over the Falkland Plateau near 53°W with decreased potential temperature (by 0.03°C) and salinity (by 0.004). As a result of ventilation by Weddell Sea waters, the signature of the Southeast Pacific Deep Water (SPDW) fraction of CDW is largely erased in the Scotia Sea. A modified form of SPDW is detected escaping the sea via two distinct routes only: following the Southern ACC Front through Georgia Passage; and skirting the eastern end of the Falkland Plateau after flowing through Shag Rocks Passage

    Anomalous magnetic splitting of the Kondo resonance

    Full text link
    The splitting of the Kondo resonance in the density of states of an Anderson impurity in finite magnetic field is calculated from the exact Bethe-ansatz solution. The result gives an estimate of the electron spectral function for nonzero magnetic field and Kondo temperature, with consequences for transport experiments on quantum dots in the Kondo regime. The strong correlations of the Kondo ground state cause a significant low-temperature reduction of the peak splitting. Explicit formulae are found for the shift and broadening of the Kondo peaks. A likely cause of the problems of large-N approaches to spin-1/2 impurities at finite magnetic field is suggested.Comment: 4 pages, 2 eps figures; published versio

    Eddy heat fluxes from direct current measurements of the Antarctic Polar Front in Shag Rocks Passage

    Get PDF
    Determining meridional heat flux in the Southern Ocean is critical to the accurate understanding and model simulation of the global ocean. Mesoscale eddies provide a significant but poorly-defined contribution to this transport. An eighteen-month deep-water current meter array deployment in Shag Rocks Passage (53°S, 48°W) between May 2003 and November 2004 provides estimates of the eddy flux of heat across the Polar Front. We calculate a statistically nonzero (99% level), vertically coherent local poleward heat flux of 12.0 ± 5.8 kW m-2 within the eddy frequency band at ~2750 m depth. Exceeding previous deep-water estimates by up to an order of magnitude, this highlights the large spatial variation in flux estimates and illustrates that constriction of circumpolar fronts facilitates large eddy transfers of heat southwards

    Delivering precision antimicrobial therapy through closed-loop control systems

    Get PDF
    Sub-optimal exposure to antimicrobial therapy is associated with poor patient outcomes and the development of antimicrobial resistance. Mechanisms for optimizing the concentration of a drug within the individual patient are under development. However, several barriers remain in realizing true individualization of therapy. These include problems with plasma drug sampling, availability of appropriate assays, and current mechanisms for dose adjustment. Biosensor technology offers a means of providing real-time monitoring of antimicrobials in a minimally invasive fashion. We report the potential for using microneedle biosensor technology as part of closed-loop control systems for the optimization of antimicrobial therapy in individual patients

    Caesarean section and risk of unexplained stillbirth in subsequent pregnancy

    Get PDF
    Background Caesarean section is associated with an increased risk of disorders of placentation in subsequent pregnancies, but effects on the rate of antepartum stillbirth are unknown. We aimed to establish whether previous caesarean delivery is associated with an increased risk of antepartum stillbirth. Methods We linked pregnancy discharge data from the Scottish Morbidity Record (1980–98) and the Scottish Stillbirth and Infant Death Enquiry (1985–98). We estimated the relative risk of antepartum stillbirth in second pregnancies using time-to-event analyses. Findings For 120 633 singleton second births, there were 68 antepartum stillbirths in 17 754 women previously delivered by caesarean section (2–39 per 10 000 women per week) and 244 in 102879 women previously delivered vaginally (1·44; p<0·001). Risk of unexplained stillbirth associated with previous caesarean delivery differed significantly with gestational age (p=0·04); the excess risk was apparent from 34 weeks (hazard ratio 2·23 [95% Cl 1·48–3·36]). Risk was not attenuated by adjustment for maternal characteristics or outcome of the first pregnancy (2·74 [1·74–4·30]). The absolute risk of unexplained stillbirth at or after 39 weeks' gestation was 1·1 per 1000 women who had had a previous caesarean section and 0·5 per 1000 in those who had not. The difference was due mostly to an excess of unexplained stillbirths among women previously delivered by caesarean section. Interpretation Delivery by caesarean section in the first pregnancy could increase the risk of unexplained stillbirth in the second. In women with one previous caesarean delivery, the risk of unexplained antepartum stillbirth at or after 39 weeks' gestation is about double the risk of stillbirth or neonatal death from intrapartum uterine rupture
    • …
    corecore