209 research outputs found

    Predicting the sensitivity and specificity of published real-time PCR assays

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>In recent years real-time PCR has become a leading technique for nucleic acid detection and quantification. These assays have the potential to greatly enhance efficiency in the clinical laboratory. Choice of primer and probe sequences is critical for accurate diagnosis in the clinic, yet current primer/probe signature design strategies are limited, and signature evaluation methods are lacking.</p> <p>Methods</p> <p>We assessed the quality of a signature by predicting the number of true positive, false positive and false negative hits against all available public sequence data. We found real-time PCR signatures described in recent literature and used a BLAST search based approach to collect all hits to the primer-probe combinations that should be amplified by real-time PCR chemistry. We then compared our hits with the sequences in the NCBI taxonomy tree that the signature was designed to detect.</p> <p>Results</p> <p>We found that many published signatures have high specificity (almost no false positives) but low sensitivity (high false negative rate). Where high sensitivity is needed, we offer a revised methodology for signature design which may designate that multiple signatures are required to detect all sequenced strains. We use this methodology to produce new signatures that are predicted to have higher sensitivity and specificity.</p> <p>Conclusion</p> <p>We show that current methods for real-time PCR assay design have unacceptably low sensitivities for most clinical applications. Additionally, as new sequence data becomes available, old assays must be reassessed and redesigned. A standard protocol for both generating and assessing the quality of these assays is therefore of great value. Real-time PCR has the capacity to greatly improve clinical diagnostics. The improved assay design and evaluation methods presented herein will expedite adoption of this technique in the clinical lab.</p

    Practically Useful: What the Rosetta Protein Modeling Suite Can Do for You

    Get PDF
    The objective of this review is to enable researchers to use the software package ROSETTA for biochemical and biomedicinal studies. We provide a brief review of the six most frequent research problems tackled with ROSETTA. For each of these six tasks, we provide a tutorial that illustrates a basic ROSETTA protocol. The ROSETTA method was originally developed for de novo protein structure prediction and is regularly one of the best performers in the community-wide biennial Critical Assessment of Structure Prediction. Predictions for protein domains with fewer than 125 amino acids regularly have a backbone root-mean-square deviation of better than 5.0 A Ëš. More impressively, there are several cases in which ROSETTA has been used to predict structures with atomic level accuracy better than 2.5 A Ëš. In addition to de novo structure prediction, ROSETTA also has methods for molecular docking, homology modeling, determining protein structures from sparse experimental NMR or EPR data, and protein design. ROSETTA has been used to accurately design a novel protein structure, predict the structure of protein-protein complexes, design altered specificity protein-protein and protein-DNA interactions, and stabilize proteins and protein complexes. Most recently, ROSETTA has been used to solve the X-ray crystallographic phase problem. ROSETTA is a unified software package for protein structure prediction and functional design. It has been used to predic

    Titan Science with the James Webb Space Telescope (JWST)

    Get PDF
    The James Webb Space Telescope (JWST), scheduled for launch in 2018, is the successor to the Hubble Space Telescope (HST) but with a significantly larger aperture (6.5 m) and advanced instrumentation focusing on infrared science (0.6-28.0 μ\mum ). In this paper we examine the potential for scientific investigation of Titan using JWST, primarily with three of the four instruments: NIRSpec, NIRCam and MIRI, noting that science with NIRISS will be complementary. Five core scientific themes are identified: (i) surface (ii) tropospheric clouds (iii) tropospheric gases (iv) stratospheric composition and (v) stratospheric hazes. We discuss each theme in depth, including the scientific purpose, capabilities and limitations of the instrument suite, and suggested observing schemes. We pay particular attention to saturation, which is a problem for all three instruments, but may be alleviated for NIRCam through use of selecting small sub-arrays of the detectors - sufficient to encompass Titan, but with significantly faster read-out times. We find that JWST has very significant potential for advancing Titan science, with a spectral resolution exceeding the Cassini instrument suite at near-infrared wavelengths, and a spatial resolution exceeding HST at the same wavelengths. In particular, JWST will be valuable for time-domain monitoring of Titan, given a five to ten year expected lifetime for the observatory, for example monitoring the seasonal appearance of clouds. JWST observations in the post-Cassini period will complement those of other large facilities such as HST, ALMA, SOFIA and next-generation ground-based telescopes (TMT, GMT, EELT).Comment: 50 pages, including 22 figures and 2 table

    Off-target capture data, endosymbiont genes and morphology reveal a relict lineage that is sister to all other singing cicadas

    Get PDF
    Phylogenetic asymmetry is common throughout the tree of life and results from contrasting patterns of speciation and extinction in the paired descendant lineages of ancestral nodes. On the depauperate side of a node, we find extant ´relict´ taxa that sit atop long, unbranched lineages. Here, we show that a tiny, pale green, inconspicuous and poorly known cicada in the genus Derotettix, endemic to degraded salt-plain habitats in arid regions of central Argentina, is a relict lineage that is sister to all other modern cicadas. Nuclear and mitochondrial phylogenies of cicadas inferred from probe-based genomic hybrid capture data of both target and non-target loci and a morphological cladogram support this hypothesis. We strengthen this conclusion with genomic data from one of the cicada nutritional bacterial endosymbionts, Sulcia, an ancient and obligate endosymbiont of the larger plant-sucking bugs (Auchenorrhyncha) and an important source of maternally inherited phylogenetic data. We establish Derotettiginae subfam. nov. as a new, monogeneric, fifth cicada subfamily, and compile existing and new data on the distribution, ecology and diet of Derotettix. Our consideration of the palaeoenvironmental literature and host-plant phylogenetics allows us to predict what might have led to the relict status of Derotettix over 100 Myr of habitat change in South America.Fil: Simon, Chris. University of Connecticut; Estados UnidosFil: Gordon, Eric R. L.. University of Connecticut; Estados UnidosFil: Moulds, M.S.. Australian Museum Research Institute; AustraliaFil: Cole, Jeffrey A.. Pasadena City College; Estados UnidosFil: Haji, Diler. University of Connecticut; Estados UnidosFil: Lemmon, Alan R.. Florida State University; Estados UnidosFil: Lemmon, Emily Moriarty. Florida State University; Estados UnidosFil: Kortyna, Michelle. Florida State University; Estados UnidosFil: Nazario, Katherine. University of Connecticut; Estados UnidosFil: Wade, Elizabeth J.. Curry College. Department of Natural Sciences and Mathematics; Estados Unidos. University of Connecticut; Estados UnidosFil: Meister, Russell C.. University of Connecticut; Estados UnidosFil: Goemans, Geert. University of Connecticut; Estados UnidosFil: Chiswell, Stephen M.. National Institute of Water and Atmospheric Research; Nueva ZelandaFil: Pessacq, Pablo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte. Centro de Investigación Esquel de Montaña y Estepa Patagónica. Universidad Nacional de la Patagonia "San Juan Bosco". Centro de Investigación Esquel de Montaña y Estepa Patagónica; ArgentinaFil: Veloso, Claudio. Universidad de Chile; ChileFil: McCutcheon, John P.. University of Montana; Estados UnidosFil: Lukasik, Piotr. University of Montana; Estados Unidos. Swedish Museum of Natural History. Department of Bioinformatics and Genetics; Sueci

    Detection of Hepatocyte Growth Factor (HGF) Ligand-c-MET Receptor Activation in Formalin-Fixed Paraffin Embedded Specimens by a Novel Proximity Assay

    Get PDF
    Aberrant activation of membrane receptors frequently occurs in human carcinomas. Detection of phosphorylated receptors is commonly used as an indicator of receptor activation in formalin-fixed paraffin embedded (FFPE) tumor specimens. FFPE is a standard method of specimen preparation used in the histological analysis of solid tumors. Due to variability in FFPE preparations and the labile nature of protein phosphorylation, measurements of phospho-proteins are unreliable and create ambiguities in clinical interpretation. Here, we describe an alternative, novel approach to measure receptor activation by detecting and quantifying ligand-receptor complexes in FFPE specimens. We used hepatocyte growth factor (HGF)-c-MET as our model ligand-receptor system. HGF is the only known ligand of the c-MET tyrosine kinase receptor and HGF binding triggers c-MET phosphorylation. Novel antibody proximity-based assays were developed and used to detect and quantify total c-MET, total HGF, and HGF-c-MET ligand-receptor interactions in FFPE cell line and tumor tissue. In glioma cells, autocrine activation of c-MET by HGF-c-MET increased basal levels of c-MET phosphorylation at tyrosine (Tyr) 1003. Furthermore, HGF-c-MET activation in glioma cell lines was verified by Surface Protein-Protein Interaction by Crosslinking ELISA (SPPICE) assay in corresponding soluble cell lysates. Finally, we profiled levels o

    RosettaScripts: A Scripting Language Interface to the Rosetta Macromolecular Modeling Suite

    Get PDF
    Macromolecular modeling and design are increasingly useful in basic research, biotechnology, and teaching. However, the absence of a user-friendly modeling framework that provides access to a wide range of modeling capabilities is hampering the wider adoption of computational methods by non-experts. RosettaScripts is an XML-like language for specifying modeling tasks in the Rosetta framework. RosettaScripts provides access to protocol-level functionalities, such as rigid-body docking and sequence redesign, and allows fast testing and deployment of complex protocols without need for modifying or recompiling the underlying C++ code. We illustrate these capabilities with RosettaScripts protocols for the stabilization of proteins, the generation of computationally constrained libraries for experimental selection of higher-affinity binding proteins, loop remodeling, small-molecule ligand docking, design of ligand-binding proteins, and specificity redesign in DNA-binding proteins

    Interleukin-4 Alters Early Phagosome Phenotype by Modulating Class I PI3K Dependent Lipid Remodeling and Protein Recruitment

    Get PDF
    Phagocytosis is a complex process that involves membranelipid remodeling and the attraction and retention of key effector proteins. Phagosome phenotype depends on the type of receptor engaged and can be influenced by extracellular signals. Interleukin 4 (IL-4) is a cytokine that induces the alternative activation of macrophages (MΦs) upon prolonged exposure, triggering a different cell phenotype that has an altered phagocytic capacity. In contrast, the direct effects of IL-4 during phagocytosis remain unknown. Here, we investigate the impact of short-term IL-4 exposure (1 hour) during phagocytosis of IgG-opsonized yeast particles by MΦs. By time-lapse confocal microscopy of GFP-tagged lipid-sensing probes, we show that IL-4 increases the negative charge of the phagosomal membrane by prolonging the presence of the negatively charged second messenger PI(3,4,5)P3. Biochemical assays reveal an enhanced PI3K/Akt activity upon phagocytosis in the presence of IL-4. Blocking the specific class I PI3K after the onset of phagocytosis completely abrogates the IL-4-induced changes in lipid remodeling and concomitant membrane charge. Finally, we show that IL-4 direct signaling leads to a significantly prolonged retention profile of the signaling molecules Rac1 and Rab5 to the phagosomal membrane in a PI3K-dependent manner. This protracted early phagosome phenotype suggests an altered maturation, which is supported by the delayed phagosome acidification measured in the presence of IL-4. Our findings reveal that molecular differences in IL-4 levels, in the extracellular microenvironment, influence the coordination of lipid remodeling and protein recruitment, which determine phagosome phenotype and, eventually, fate. Endosomal and phagosomal membranes provide topological constraints to signaling molecules. Therefore, changes in the phagosome phenotype modulated by extracellular factors may represent an additional mechanism that regulates the outcome of phagocytosis and could have significant impact on the net biochemical output of a cell

    Membrane topology of gp41 and amyloid precursor protein: interfering transmembrane interactions as potential targets for HIV and Alzheimer treatment

    Get PDF
    The amyloid precursor protein (APP), that plays a critical role in the development of senile plaques in Alzheimer disease (AD), and the gp41 envelope protein of the human immunodeficiency virus (HIV), the causative agent of the acquired immunodeficiency syndrome (AIDS), are single-spanning type-1 transmembrane (TM) glycoproteins with the ability to form homo-oligomers. In this review we describe similarities, both in structural terms and sequence determinants of their TM and juxtamembrane regions. The TM domains are essential not only for anchoring the proteins in membranes but also have functional roles. Both TM segments contain GxxxG motifs that drive TM associations within the lipid bilayer. They also each possess similar sequence motifs, positioned at the membrane interface preceding their TM domains. These domains are known as cholesterol recognition/interaction amino acid consensus (CRAC) motif in gp41 and CRAC-like motif in APP. Moreover, in the cytoplasmic domain of both proteins other alpha-helical membranotropic regions with functional implications have been identified. Recent drug developments targeting both diseases are reviewed and the potential use of TM interaction modulators as therapeutic targets is discussed
    • …
    corecore