1,353 research outputs found

    Tripartite entanglement dynamics in a system of strongly driven qubits

    Full text link
    We study the dynamics of tripartite entanglement in a system of two strongly driven qubits individually coupled to a dissipative cavity. We aim at explanation of the previously noted entanglement revival between two qubits in this system. We show that the periods of entanglement loss correspond to the strong tripartite entanglement between the qubits and the cavity and the recovery has to do with an inverse process. We demonstrate that the overall process of qubit-qubit entanglement loss is due to the second order coupling to the external continuum which explains the exp[-g^2 t/2+g^2 k t^3/6+\cdot] for of the entanglement loss reported previously.Comment: 9 pages, 5 figure

    Re-entrant spin glass and magnetoresistance in Co_{0.2}Zn_{0.8}Fe_{1.6}Ti_{0.4}O_4 spinel oxide

    Full text link
    We have investigated the static and dynamic response of magnetic clusters in Co_{0.2}Zn_{0.8}Fe_{1.6}Ti_{0.4}O_4 spinel oxide, where a sequence of magnetic phase transitions, i.e., paramagnetic (PM) to ferromagnetic at T_{C} ≤\leq 270K and ferromagnetic to canted spin glass state at T_f \leq$ 125K is observed

    A Nonperturbative Eliasson's Reducibility Theorem

    Full text link
    This paper is concerned with discrete, one-dimensional Schr\"odinger operators with real analytic potentials and one Diophantine frequency. Using localization and duality we show that almost every point in the spectrum admits a quasi-periodic Bloch wave if the potential is smaller than a certain constant which does not depend on the precise Diophantine conditions. The associated first-order system, a quasi-periodic skew-product, is shown to be reducible for almost all values of the energy. This is a partial nonperturbative generalization of a reducibility theorem by Eliasson. We also extend nonperturbatively the genericity of Cantor spectrum for these Schr\"odinger operators. Finally we prove that in our setting, Cantor spectrum implies the existence of a GδG_\delta-set of energies whose Schr\"odinger cocycle is not reducible to constant coefficients

    Coherent instabilities in a semiconductor laser with fast gain recovery

    Get PDF
    We report the observation of a coherent multimode instability in quantum cascade lasers (QCLs), which is driven by the same fundamental mechanism of Rabi oscillations as the elusive Risken-Nummedal-Graham-Haken (RNGH) instability predicted 40 years ago for ring lasers. The threshold of the observed instability is significantly lower than in the original RNGH instability, which we attribute to saturable-absorption nonlinearity in the laser. Coherent effects, which cannot be reproduced by standard laser rate equations, can play therefore a key role in the multimode dynamics of QCLs, and in lasers with fast gain recovery in general.Comment: 5 pages, 4 figure

    On linearized gravity in the Randall-Sundrum scenario

    Get PDF
    In the literature about the Randall-Sundrum scenario one finds on one hand that there exist (small) corrections to Newton's law of gravity on the brane, and on another that the exact (and henceforth linearized) Einstein equations can be recovered on the brane. The explanation for these seemingly contradictory results is that the behaviour of the bulk far from the brane is different in both models. We show that explicitely in this paper.Comment: 12 pages, plain TeX, no figure

    Thermopower of Aharonov-Bohm Interferometer with a Quantum Dot

    Full text link
    We report on the thermopower of an Aharonov-Bohm interferometer (AB) with a quantum dot in the Kondo limit. The thermopower is anomalously enhanced due to the Kondo effect as in heavy fermion systems. In contrast to the bulk systems, the sign of the thermopower can be changed by adjusting the energy level scheme or the particle-hole asymmetry of a dot with the gate voltage. Further the magnitude and even the sign of the thermopower in the AB ring can be changed at will with varying either magnetic fields or the gate voltages.Comment: 4 pages, 3 figures, accepted for publication in Physical Review Letter

    On the error term in Weyl's law for the Heisenberg manifolds (II)

    Full text link
    In this paper we study the mean square of the error term in the Weyl's law of an irrational (2l+1)(2l+1)-dimensional Heisenberg manifold . An asymptotic formula is established

    Suppression of current in transport through parallel double quantum dots

    Full text link
    We report our study of the I-V curves in the transport through the quantum dot when an additional quantum dot lying in the Kondo regime is side-connected to it. Due to the Kondo scattering off the effective spin on a side-connected quantum dot the conductance is suppressed at low temperatures and at low source-drain bias voltages. This zero-bias anomaly is understood as enhanced Kondo scattering with decreasing temperature.Comment: 14 pages, 8 figure

    Cosmological thermodynamics and deflationary gas universe

    Get PDF
    We establish a general thermodynamic scheme for cosmic fluids with internal self-interactions and discuss equilibrium and non-equilibrium aspects of such systems in connection with (generalized) symmetry properties of the cosmological dynamics. As an example we construct an exactly solvable gas dynamical model of a ``deflationary'' transition from an initial de Sitter phase to a subsequent Friedmann-Lema\^{\i}tre-Robertson-Walker (FLRW) period. We demonstrate that this dynamics represents a manifestation of a conformal symmetry of an ``optical'' metric, characterized by a specific effective refraction index of the cosmic medium.Comment: 12 pages, to appear in PR
    • …
    corecore