1,641,798 research outputs found

    Berezinskii-Kosterlitz-Thouless transition and criticality of an elliptic deformation of the sine-Gordon model

    Get PDF
    We introduce and study the properties of a periodic model interpolating between the sine-- and the sinh--Gordon theories in 1+11+1 dimensions. This model shows the peculiarities, due to the preservation of the functional form of their potential across RG flows, of the two limiting cases: the sine-Gordon, not having conventional order/magnetization at finite temperature, but exhibiting Berezinskii-Kosterlitz-Thouless (BKT) transition; and the sinh-Gordon, not having a phase transition, but being integrable. The considered interpolation, which we term as {\em sn-Gordon} model, is performed with potentials written in terms of Jacobi functions. The critical properties of the sn-Gordon theory are discussed by a renormalization-group approach. The critical points, except the sinh-Gordon one, are found to be of BKT type. Explicit expressions for the critical coupling as a function of the elliptic modulus are given.Comment: v2, 10 pages, 8 figures, accepted in J. Phys.

    On non commutative sinh-Gordon Equation

    Get PDF
    We give a noncommutative extension of sinh-Gordon equation. We generalize a linear system and Lax representation of the sinh-Gordon equation in noncommutative space. This generalization gives a noncommutative version of the sinh-Gordon equation with extra constraints, which can be expressed as global conserved currents.Comment: 7 Page

    Quantization of Solitons and the Restricted Sine-Gordon Model

    Get PDF
    We show how to compute form factors, matrix elements of local fields, in the restricted sine-Gordon model, at the reflectionless points, by quantizing solitons. We introduce (quantum) separated variables in which the Hamiltonians are expressed in terms of (quantum) tau-functions. We explicitly describe the soliton wave functions, and we explain how the restriction is related to an unusual hermitian structure. We also present a semi-classical analysis which enlightens the fact that the restricted sine-Gordon model corresponds to an analytical continuation of the sine-Gordon model, intermediate between sine-Gordon and KdV.Comment: 29 pages, Latex, minor updatin

    Study of models of the sine-Gordon type in flat and curved spacetime

    Full text link
    We study a new family of models of the sine-Gordon type, starting from the sine-Gordon model, including the double sine-Gordon, the triple one, and so on. The models appears as deformations of the starting model, with the deformation controlled by two parameters, one very small, used to control a linear expansion on it, and the other, which specifies the particular model in the family of models. We investigate the presence of topological defects, showing how the solutions can be constructed explicitly from the topological defects of the sine-Gordon model itself. In particular, we delve into the double sine-Gordon model in a braneworld scenario with a single extra dimension of infinite extent, showing that a stable gravity scenario is admissible. Also, we briefly show that the deformation procedure can be used iteratively, leading to a diversity of possibilities to construct families of models of the sine-Gordon type.Comment: 8 pages, 7 figures; Title changed, author and new results included; version to appear in EPJ
    • …
    corecore