8 research outputs found

    Bispecific killer cell engager with high affinity and specificity toward CD16a on NK cells for cancer immunotherapy

    Get PDF
    IntroductionThe Fc region of monoclonal antibodies (mAbs) interacts with the CD16a receptor on natural killer (NK) cells with “low affinity” and “low selectivity”. This low affinity/selectivity interaction results in not only suboptimal anticancer activity but also induction of adverse effects. CD16a on NK cells binds to the antibody-coated cells, leading to antibody-dependent cell-mediated cytotoxicity (ADCC). Recent clinical data have shown that the increased binding affinity between mAb Fc region and CD16a receptor is responsible for significantly improved therapeutic outcomes. Therefore, the objective of this study was to develop a bispecific killer cell engager (BiKE) with high affinity and specificity/selectivity toward CD16a receptor for NK cell-based cancer immunotherapy.MethodsTo engineer BiKE, a llama was immunized, then high binding anti-CD16a and anti-HER2 VHH clones were isolated using phage display. ELISA, flow cytometry, and biolayer interferometry (BLI) data showed that the isolated anti-CD16a VHH has high affinity (sub-nanomolar) toward CD16a antigen without cross-reactivity with CD16b-NA1 on neutrophils or CD32b on B cells. Similarly, the data showed that the isolated anti-HER2 VHH has high affinity/specificity toward HER2 antigen. Using a semi-flexible linker, anti-HER2 VHH was recombinantly fused with anti-CD16a VHH to create BiKE:HER2/CD16a. Then, the ability of BiKE:HER2/CD16a to activate NK cells to release cytokines and kill HER2+ cancer cells was measured. As effector cells, both high-affinity haNK92 (CD16+, V176) and low-affinity laNK92 (CD16+, F176) cells were used.Results and discussionThe data showed that the engineered BiKE:HER2/CD16a activates haNK92 and laNK92 cells to release cytokines much greater than best-in-class mAbs in the clinic. The cytotoxicity data also showed that the developed BiKE induces higher ADCC to both ovarian and breast cancer cells in comparison to Trazimera™ (trastuzumab). According to the BLI data, BiKE:HER2/CD16 recognizes a different epitope on CD16a antigen than IgG-based mAbs; thus, it provides the opportunity for not only monotherapy but also combination therapy with other antibody drugs such as checkpoint inhibitors and antibody-drug conjugates. Taken together, the data demonstrate the creation of a novel BiKE with high affinity and specificity toward CD16a on NK cells with the potential to elicit a superior therapeutic response in patients with HER2+ cancer than existing anti-HER2 mAbs

    Comparative Structural and Computational Analysis Supports Eighteen Cellulose Synthases in the Plant Cellulose Synthesis Complex

    Get PDF
    A six-lobed membrane spanning cellulose synthesis complex (CSC) containing multiple cellulose synthase (CESA) glycosyltransferases mediates cellulose microfibril formation. The number of CESAs in the CSC has been debated for decades in light of changing estimates of the diameter of the smallest microfibril formed from the β-1,4 glucan chains synthesized by one CSC. We obtained more direct evidence through generating improved transmission electron microscopy (TEM) images and image averages of the rosette-type CSC, revealing the frequent triangularity and average cross-sectional area in the plasma membrane of its individual lobes. Trimeric oligomers of two alternative CESA computational models corresponded well with individual lobe geometry. A six-fold assembly of the trimeric computational oligomer had the lowest potential energy per monomer and was consistent with rosette CSC morphology. Negative stain TEM and image averaging showed the triangularity of a recombinant CESA cytosolic domain, consistent with previous modeling of its trimeric nature from small angle scattering (SAXS) data. Six trimeric SAXS models nearly filled the space below an average FF-TEM image of the rosette CSC. In summary, the multifaceted data support a rosette CSC with 18 CESAs that mediates the synthesis of a fundamental microfibril composed of 18 glucan chains

    Anomalous X-ray diffraction studies of ion transport in K+ channels.

    No full text
    Potassium ion channels utilize a highly selective filter to rapidly transport K+ ions across cellular membranes. This selectivity filter is composed of four binding sites which display almost equal electron density in crystal structures with high potassium ion concentrations. This electron density can be interpreted to reflect a superposition of alternating potassium ion and water occupied states or as adjacent potassium ions. Here, we use single wavelength anomalous dispersion (SAD) X-ray diffraction data collected near the potassium absorption edge to show experimentally that all ion binding sites within the selectivity filter are fully occupied by K+ ions. These data support the hypothesis that potassium ion transport occurs by direct Coulomb knock-on, and provide an example of solving the phase problem by K-SAD

    Substrate Binding Induces Conformational Changes in a Class A β‑lactamase That Prime It for Catalysis

    No full text
    The emergence and dissemination of bacterial resistance to β-lactam antibiotics via β-lactamase enzymes is a serious problem in clinical settings, often leaving few treatment options for infections resulting from multidrug-resistant superbugs. Understanding the catalytic mechanism of β-lactamases is important for developing strategies to overcome resistance. Binding of a substrate in the active site of an enzyme can alter the conformations and p<i>K</i><sub>a</sub>s of catalytic residues, thereby contributing to enzyme catalysis. Here we report X-ray and neutron crystal structures of the class A Toho-1 β-lactamase in the apo form and an X-ray structure of a Michaelis-like complex with the cephalosporin antibiotic cefotaxime in the active site. Comparison of these structures reveals that substrate binding induces a series of changes. The side chains of conserved residues important in catalysis, Lys73 and Tyr105, and the main chain of Ser130 alter their conformations, with Nζ of Lys73 moving closer to the position of the conserved catalytic nucleophile Ser70. This movement of Lys73 closer to Ser70 is consistent with proton transfer between the two residues prior to acylation. In combination with the tightly bound catalytic water molecule located between Glu166 and the position of Ser70, the enzyme is primed for catalysis when Ser70 is activated for nucleophilic attack of the β-lactam ring. Quantum mechanical/molecular mechanical (QM/MM) free energy simulations of models of the wild-type enzyme show that proton transfer from the Nζ of Lys73 to the Oε2 atom of Glu166 is more thermodynamically favorable than when it is absent. Taken together, our findings indicate that substrate binding enhances the favorability of the initial proton transfer steps that precede the formation of the acyl-enzyme intermediate
    corecore