310 research outputs found

    Effect of remission status and induction chemotherapy regimen on outcome of autologous stem cell transplantation for mantle cell lymphoma.

    Get PDF
    We analysed the outcomes of autologous stem cell transplantation (ASCT) following high-dose therapy with respect to remission status at the time of transplantation and induction regimen used in 56 consecutive patients with mantle cell lymphoma (MCL). Twenty-one patients received induction chemotherapy with HyperCVAD with or without rituximab (+/-R) followed by ASCT in first complete or partial remission (CR1/PR1), 15 received CHOP (+/-R) followed by ASCT in CR1/PR1 and 20 received ASCT following disease progression. Estimates of overall and progression-free survival (PFS) at 3 years among patients transplanted in CR1/PR1 were 93% and 63% compared with 46% and 36% for patients transplanted with relapsed/refractory disease, respectively. The hazard of mortality among patients transplanted with relapsed/refractory disease was 6.09 times that of patients transplanted in CR1/PR1 (P = 0.006). Patients in the CHOP (+/-R) group had a higher risk of failure for PFS compared with patients in the HyperCVAD (+/-R) group, though the difference did not reach statistical significance (hazard ratio 3.67, P = 0.11). These results suggest that ASCT in CR1/PR1 leads to improved survival outcomes for patients with MCL compared to ASCT with relapsed/refractory disease, and a HyperCVAD (+/-R) induction regimen may be associated with an improved PFS among patients transplanted in CR1/PR1

    Results of a phase I-II study of fenretinide and rituximab for patients with indolent B-cell lymphoma and mantle cell lymphoma.

    Get PDF
    Fenretinide, a synthetic retinoid, induces apoptotic cell death in B-cell non-Hodgkin lymphoma (B-NHL) and acts synergistically with rituximab in preclinical models. We report results from a phase I-II study of fenretinide with rituximab for B-NHLs. Eligible diagnoses included indolent B-NHL or mantle cell lymphoma. The phase I design de-escalated from fenretinide at 900 mg/

    A Phase I trial of talazoparib in patients with advanced hematologic malignancies

    Get PDF
    Aim: The objective of this study was to establish the maximum tolerated dose (MTD), safety, pharmacokinetics, and anti-leukemic activity of talazoparib. Patients & methods: This Phase I, two-cohort, dose-escalation trial evaluated talazoparib monotherapy in advanced hematologic malignancies (cohort 1: acute myeloid leukemia/myelodysplastic syndrome; cohort 2: chronic lymphocytic leukemia/mantle cell lymphoma). Results: Thirty-three (cohort 1: n = 25; cohort 2: n = 8) patients received talazoparib (0.1-2.0 mg once daily). The MTD was exceeded at 2.0 mg/day in cohort 1 and at 0.9 mg/day in cohort 2. Grade ≥3 adverse events were primarily hematologic. Eighteen (54.5%) patients reported stable disease. Conclusion: Talazoparib is relatively well tolerated in hematologic malignancies, with a similar MTD as in solid tumors, and shows preliminary anti leukemic activity.Clinical trial registration: NCT01399840 (ClinicalTrials.gov). Keywords: BRCA1/2 mutations; DNA damage response; hematologic malignancy; poly(ADP-ribose) polymerase inhibition; talazoparib

    Role of Fibrin Glue as a Sealant to Esophageal Anastomosis in Cases of Congenital Esophageal Atresia with Tracheoesophageal Fistula

    Get PDF
    Abstract Objective The aim of this study was to characterize a successful approach for the management of infants with long-gap esophageal atresia (EA) with tracheoesophageal fistula (TEF). The goal was to preserve the native esophagus and minimize the incidence of esophageal anastomotic leaks using fibrin glue as a sealant over the esophageal anastomosis. Method A total of 52 patients were evaluated in this study. Only patients in whom, gap between the two ends of the esophagus was ‡ 2 cm were selected durin

    Anti-CD45 Pretargeted Radioimmunotherapy Prior to Bone Marrow Transplantation without Total Body Irradiation Facilitates Engraftment From Haploidentical Donors and Prolongs Survival in a Disseminated Murine Leukemia Model

    Get PDF
    s / Biol Blood Marrow Transplant 19 (2013) S211eS232 S228 chemotherapy was HIDAC (1-3 grams/m2 for 6-8 doses)/ Etoposide(15-40mg/kg) in 16 patients and growth factor alone in one patient. Median time from diagnosis to ASCT was 4.2 (range 3.6-7) months. Preparative regimen for ASCT was Busulfan (3.2mg/kg x 4)/Etoposide (60 mg/kg) in 12 patients and high dose melphalan in 5 patients. The median CD34 cells infused was 4.9 x 10e6/kg (range 2.8 to 15.9).All patients engrafted with a median time to neutrophil engraftment of 11 (range10-12) days. The median time to platelet engraftment was 20 (range15-40) days. The median length of inpatient stay during the ASCT admission was 14 (range 10-25) days. One patient died of progressive disease 14 months post ASCT. Two patients died in remission on day 53 (sepsis) and day 836 (unknown cause) post ASCT. Fourteen patients (82%) are currently alive in complete remission. at a median follow-up of 20 (range 140) months post ASCT. Conclusion: Consolidation of good risk AML patients with ASCT following induction of complete remission is safe and effective in preventing relapse in good risk AML patients

    Pretargeted Radioimmunotherapy Using Genetically Engineered Antibody-Streptavidin Fusion Proteins for Treatment of Non-Hodgkin Lymphoma

    Get PDF
    Pretargeted radioimmunotherapy (PRIT) using streptavidin (SAv)-biotin technology can deliver higher therapeutic doses of radioactivity to tumors than conventional RIT. However, “endogenous” biotin can interfere with the effectiveness of this approach by blocking binding of radiolabeled biotin to SAv. We engineered a series of SAv FPs that down-modulate the affinity of SAv for biotin, while retaining high avidity for divalent DOTA-bis-biotin to circumvent this problem

    Community Control of Hypertension and Diabetes (CoCo-HD) program in the Indian states of Kerala and Tamil Nadu : a study protocol for a type 3 hybrid trial

    Get PDF
    Introduction: India grapples with a formidable health challenge, with an estimated 315 million adults afflicted with hypertension and 100 million living with diabetes mellitus. Alarming statistics reveal rates for poor treatment and control of hypertension and diabetes. In response to these pressing needs, the Community Control of Hypertension and Diabetes (CoCo-HD) program aims to implement structured lifestyle interventions at scale in the southern Indian states of Kerala and Tamil Nadu. Aims: This research is designed to evaluate the implementation outcomes of peer support programs and community mobilisation strategies in overcoming barriers and maximising enablers for effective diabetes and hypertension prevention and control. Furthermore, it will identify contextual factors that influence intervention scalability and it will also evaluate the program’s value and return on investment through economic evaluation. Methods: The CoCo-HD program is underpinned by a longstanding collaborative effort, engaging stakeholders to co-design comprehensive solutions that will be scalable in the two states. This entails equipping community health workers with tailored training and fostering community engagement, with a primary focus on leveraging peer supportat scale in these communities. The evaluation will undertake a hybrid type III trial in, Kerala and Tamil Nadu states, guided by the Institute for Health Improvement framework. The evaluation framework is underpinned by the application of three frameworks, RE-AIM, Normalisation Process Theory, and the Consolidated Framework for Implementation Research. Evaluation metrics include clinical outcomes: diabetes and hypertension control rates, as well as behavioural, physical, and biochemical measurements and treatment adherence. Discussion: The anticipated outcomes of this study hold immense promise, offering important learnings into effective scaling up of lifestyle interventions for hypertension and diabetes control in low- and middle-income countries (LMICs). By identifying effective implementation strategies and contextual determinants, this research has the potential to lead to important changes in healthcare delivery systems. Conclusions: The project will provide valuable evidence for the scaling-up of structured lifestyle interventions within the healthcare systems of Kerala and Tamil Nadu, thus facilitating their future adaptation to diverse settings in India and other LMICs.Peer reviewe

    Erratum: Global, regional, and national comparative risk assessment of 84 behavioural, environmental and occupational, and metabolic risks or clusters of risks for 195 countries and territories, 1990–2017: a systematic analysis for the Global Burden of Disease Study 2017

    Get PDF
    Interpretation: By quantifying levels and trends in exposures to risk factors and the resulting disease burden, this assessment offers insight into where past policy and programme efforts might have been successful and highlights current priorities for public health action. Decreases in behavioural, environmental, and occupational risks have largely offset the effects of population growth and ageing, in relation to trends in absolute burden. Conversely, the combination of increasing metabolic risks and population ageing will probably continue to drive the increasing trends in non-communicable diseases at the global level, which presents both a public health challenge and opportunity. We see considerable spatiotemporal heterogeneity in levels of risk exposure and risk-attributable burden. Although levels of development underlie some of this heterogeneity, O/E ratios show risks for which countries are overperforming or underperforming relative to their level of development. As such, these ratios provide a benchmarking tool to help to focus local decision making. Our findings reinforce the importance of both risk exposure monitoring and epidemiological research to assess causal connections between risks and health outcomes, and they highlight the usefulness of the GBD study in synthesising data to draw comprehensive and robust conclusions that help to inform good policy and strategic health planning

    Population and fertility by age and sex for 195 countries and territories, 1950–2017: a systematic analysis for the Global Burden of Disease Study 2017

    Get PDF
    Background: Population estimates underpin demographic and epidemiological research and are used to track progress on numerous international indicators of health and development. To date, internationally available estimates of population and fertility, although useful, have not been produced with transparent and replicable methods and do not use standardised estimates of mortality. We present single-calendar year and single-year of age estimates of fertility and population by sex with standardised and replicable methods. Methods: We estimated population in 195 locations by single year of age and single calendar year from 1950 to 2017 with standardised and replicable methods. We based the estimates on the demographic balancing equation, with inputs of fertility, mortality, population, and migration data. Fertility data came from 7817 location-years of vital registration data, 429 surveys reporting complete birth histories, and 977 surveys and censuses reporting summary birth histories. We estimated age-specific fertility rates (ASFRs; the annual number of livebirths to women of a specified age group per 1000 women in that age group) by use of spatiotemporal Gaussian process regression and used the ASFRs to estimate total fertility rates (TFRs; the average number of children a woman would bear if she survived through the end of the reproductive age span [age 10–54 years] and experienced at each age a particular set of ASFRs observed in the year of interest). Because of sparse data, fertility at ages 10–14 years and 50–54 years was estimated from data on fertility in women aged 15–19 years and 45–49 years, through use of linear regression. Age-specific mortality data came from the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2017 estimates. Data on population came from 1257 censuses and 761 population registry location-years and were adjusted for underenumeration and age misreporting with standard demographic methods. Migration was estimated with the GBD Bayesian demographic balancing model, after incorporating information about refugee migration into the model prior. Final population estimates used the cohort-component method of population projection, with inputs of fertility, mortality, and migration data. Population uncertainty was estimated by use of out-of-sample predictive validity testing. With these data, we estimated the trends in population by age and sex and in fertility by age between 1950 and 2017 in 195 countries and territories. Findings: From 1950 to 2017, TFRs decreased by 49·4% (95% uncertainty interval [UI] 46·4–52·0). The TFR decreased from 4·7 livebirths (4·5–4·9) to 2·4 livebirths (2·2–2·5), and the ASFR of mothers aged 10–19 years decreased from 37 livebirths (34–40) to 22 livebirths (19–24) per 1000 women. Despite reductions in the TFR, the global population has been increasing by an average of 83·8 million people per year since 1985. The global population increased by 197·2% (193·3–200·8) since 1950, from 2·6 billion (2·5–2·6) to 7·6 billion (7·4–7·9) people in 2017; much of this increase was in the proportion of the global population in south Asia and sub-Saharan Africa. The global annual rate of population growth increased between 1950 and 1964, when it peaked at 2·0%; this rate then remained nearly constant until 1970 and then decreased to 1·1% in 2017. Population growth rates in the southeast Asia, east Asia, and Oceania GBD super-region decreased from 2·5% in 1963 to 0·7% in 2017, whereas in sub-Saharan Africa, population growth rates were almost at the highest reported levels ever in 2017, when they were at 2·7%. The global average age increased from 26·6 years in 1950 to 32·1 years in 2017, and the proportion of the population that is of working age (age 15–64 years) increased from 59·9% to 65·3%. At the national level, the TFR decreased in all countries and territories between 1950 and 2017; in 2017, TFRs ranged from a low of 1·0 livebirths (95% UI 0·9–1·2) in Cyprus to a high of 7·1 livebirths (6·8–7·4) in Niger. The TFR under age 25 years (TFU25; number of livebirths expected by age 25 years for a hypothetical woman who survived the age group and was exposed to current ASFRs) in 2017 ranged from 0·08 livebirths (0·07–0·09) in South Korea to 2·4 livebirths (2·2–2·6) in Niger, and the TFR over age 30 years (TFO30; number of livebirths expected for a hypothetical woman ageing from 30 to 54 years who survived the age group and was exposed to current ASFRs) ranged from a low of 0·3 livebirths (0·3–0·4) in Puerto Rico to a high of 3·1 livebirths (3·0–3·2) in Niger. TFO30 was higher than TFU25 in 145 countries and territories in 2017. 33 countries had a negative population growth rate from 2010 to 2017, most of which were located in central, eastern, and western Europe, whereas population growth rates of more than 2·0% were seen in 33 of 46 countries in sub-Saharan Africa. In 2017, less than 65% of the national population was of working age in 12 of 34 high-income countries, and less than 50% of the national population was of working age in Mali, Chad, and Niger. Interpretation: Population trends create demographic dividends and headwinds (ie, economic benefits and detriments) that affect national economies and determine national planning needs. Although TFRs are decreasing, the global population continues to grow as mortality declines, with diverse patterns at the national level and across age groups. To our knowledge, this is the first study to provide transparent and replicable estimates of population and fertility, which can be used to inform decision making and to monitor progress
    corecore