2 research outputs found

    NC Calabi-Yau Orbifolds in Toric Varieties with Discrete Torsion

    Get PDF
    Using the algebraic geometric approach of Berenstein et {\it al} (hep-th/005087 and hep-th/009209) and methods of toric geometry, we study non commutative (NC) orbifolds of Calabi-Yau hypersurfaces in toric varieties with discrete torsion. We first develop a new way of getting complex dd mirror Calabi-Yau hypersurfaces HΔ∗dH_{\Delta}^{\ast d} in toric manifolds MΔ∗(d+1)M_{\Delta }^{\ast (d+1)} with a C∗rC^{\ast r} action and analyze the general group of the discrete isometries of HΔ∗dH_{\Delta}^{\ast d}. Then we build a general class of dd complex dimension NC mirror Calabi-Yau orbifolds where the non commutativity parameters θμν\theta_{\mu \nu} are solved in terms of discrete torsion and toric geometry data of MΔ(d+1)M_{\Delta}^{(d+1)} in which the original Calabi-Yau hypersurfaces is embedded. Next we work out a generalization of the NC algebra for generic dd dimensions NC Calabi-Yau manifolds and give various representations depending on different choices of the Calabi-Yau toric geometry data. We also study fractional D-branes at orbifold points. We refine and extend the result for NC T2)/(Z2×Z2)% (T^{2}\times T^{2}\times T^{2})/(\mathbf{{Z_{2}}\times {Z_{2})}} to higher dimensional torii orbifolds in terms of Clifford algebra.Comment: 38 pages, Late
    corecore