44 research outputs found
A Disintegrin and Metalloenzyme (ADAM) 17 Activation Is Regulated by α5β1 Integrin in Kidney Mesangial Cells
The disintegrin and metalloenzyme ADAM17 participates in numerous inflammatory and proliferative diseases, and its pathophysiological role was implicated in kidney fibrosis, polycystic kidney disease and other chronic kidney diseases. At present, we have little understanding how the enzyme activity is regulated. In this study we wanted to characterize the role of α5β1 integrin in ADAM17 activity regulation during G protein-coupled receptor (GPCR) stimulation.We showed previously that the profibrotic GPCR agonist serotonin (5-HT) induced kidney mesangial cell proliferation through ADAM17 activation and heparin-binding epidermal growth factor (HB-EGF) shedding. In the present studies we observed that in unstimulated mesangial cell lysates α5β1 integrin co-precipitated with ADAM17 and that 5-HT treatment of the cells induced dissociation of α5β1 integrin from ADAM17. Using fluorescence immunostaining and in situ proximity ligation assay, we identified the perinuclear region as the localization of the ADAM17/α5β1 integrin interaction. In cell-free assays, we showed that purified α5β1 integrin and β1 integrin dose-dependently bound to and inhibited activity of recombinant ADAM17. We provided evidence that the conformation of the integrin determines its ADAM17-binding ability. To study the effect of β1 integrin on ADAM17 sheddase activity, we employed alkaline phosphatase-tagged HB-EGF. Overexpression of β1 integrin lead to complete inhibition of 5-HT-induced HB-EGF shedding and silencing β1 integrin by siRNA significantly increased mesangial cells ADAM17 responsiveness to 5-HT.Our data show for the first time that β1 integrin has an important physiological role in ADAM17 activity regulation. We suggest that regulating α5β1 integrin binding to ADAM17 could be an attractive therapeutic target in chronic kidney diseases
Deletion of airway cilia results in noninflammatory bronchiectasis and hyperreactive airways
The mechanisms for the development of bronchiectasis and airway hyperreactivity have not been fully elucidated. Although genetic, acquired diseases and environmental influences may play a role, it is also possible that motile cilia can influence this disease process. We hypothesized that deletion of a key intraflagellar transport molecule, IFT88, in mature mice causes loss of cilia, resulting in airway remodeling. Airway cilia were deleted by knockout of IFT88, and airway remodeling and pulmonary function were evaluated. In IFT88− mice there was a substantial loss of airway cilia on respiratory epithelium. Three months after the deletion of cilia, there was clear evidence for bronchial remodeling that was not associated with inflammation or apparent defects in mucus clearance. There was evidence for airway epithelial cell hypertrophy and hyperplasia. IFT88− mice exhibited increased airway reactivity to a methacholine challenge and decreased ciliary beat frequency in the few remaining cells that possessed cilia. With deletion of respiratory cilia there was a marked increase in the number of club cells as seen by scanning electron microscopy. We suggest that airway remodeling may be exacerbated by the presence of club cells, since these cells are involved in airway repair. Club cells may be prevented from differentiating into respiratory epithelial cells because of a lack of IFT88 protein that is necessary to form a single nonmotile cilium. This monocilium is a prerequisite for these progenitor cells to transition into respiratory epithelial cells. In conclusion, motile cilia may play an important role in controlling airway structure and function
A nonspeech investigation of tongue function in Parkinson's disease
Background. Nonspeech investigations of tongue function in persons with Parkinson's disease (PD) have generally reported impaired tongue strength, endurance, and fine force control. However, these investigations did not specifically evaluate the relative contribution of age effects to the deficits in tongue function observed. Furthermore, the relationship between these nonspeech measures of tongue function and the speech disorder present in PD remains equivocal. Therefore, the current study investigated the strength, rate of repetitive movement, fine force control, and endurance of the tongue in three groups of participants. Methods. Participants in the study included 14 older adults with PD and imprecise consonant articulation, 11 neurologically healthy older adults, and 15 neurologically healthy young adults. All participants were assessed using a comprehensive nonspeech assessment battery of tongue function. Results. The results of the investigation revealed similar levels of tongue strength, rate of repetitive movement, and endurance between the persons with PD and the older control participants. Significant age effects were noted, with both groups demonstrating significantly reduced functioning on those measures when compared to young control participants. However, the three participant groups had similar levels of fine force control. No relationship was found between the nonspeech measures of tongue function employed and the severity of consonant imprecision. Conclusion. The nonspeech measures used failed to provide useful diagnostic information regarding the physiologic basis of perceived articulatory dysfunction in the persons with PD who were examined
Differentiation of Human Protein-Induced Pluripotent Stem Cells toward a Retinal Pigment Epithelial Cell Fate.
Compared with many induced pluripotent stem cell (iPSC) lines generated using retrovirus and other non-integrating methods, the utilization of human protein-induced iPSC (piPSC) lines may provide a safer alternative for the generation of retinal pigment epithelial (RPE) cells for transplantation in retinal degenerative diseases. Here we assess the ability of piPSCs to differentiate into RPE cells, and to perform native RPE cell behavior. piPSCs were seeded in 6-well low-attachment plates to allow embryoid body formation, and then analyzed for pluripotent stem cell markers NANOG, SSEA4 and TRA-1-60 by immunofluorescence. Following colony formation, piPSCs were assessed for confirmation of RPE cell differentiation by staining for zonula occludens (ZO-1), bestrophin, microphthalmia-associated transcription factor (MITF) and retinal pigment epithelium specific protein-65 (RPE65). To evaluate piPSC-RPE cell phagocytic ability, adult bovine photoreceptor rod outer segments (ROS) were fed to piPSC-RPE cells, which were analyzed by fluorescent microscopy and flow cytometry. Undifferentiated piPSCs expressed all pluripotent markers assessed and formed embryoid body aggregates after 7 days. Differentiated piPSC-RPE cells expressed ZO-1, bestrophin, MITF and RPE65, typical RPE cell markers. Flow cytometry revealed robust ingestion of fluorescently-labeled ROS by piPSC-RPE cells, which was over four-times greater than that of undifferentiated piPSCs and comparable to that of an immortalized RPE cell line. Phagocytosis activity by piPSC-RPE cells was significantly reduced after the addition of anti-integrin αVβ5. In conclusion, piPSCs can be differentiated toward an RPE cell fate, expressing RPE cell markers and resembling native RPE cells in behavior. These results demonstrate that piPSCs can be differentiated into RPE-like cells using a method that has an increased safety profile, a critical consideration for the development of better treatments for retinal degenerative diseases such as age-related macular degeneration (AMD)