28 research outputs found

    Evaluation and patient experience of wireless noninvasive fetal heart rate monitoring devices

    Get PDF
    Introduction: In clinical practice, fetal heart rate monitoring is performed intermittently using Doppler ultrasound, typically for 30 minutes. In case of a non-reassuring heart rate pattern, monitoring is usually prolonged. Noninvasive fetal electrocardiography may be more suitable for prolonged monitoring due to improved patient comfort and signal quality. This study evaluates the performance and patient experience of four noninvasive electrocardiography devices to assess candidate devices for prolonged noninvasive fetal heart rate monitoring. Material and methods: Non-critically sick women with a singleton pregnancy from 24 weeks of gestation were eligible for inclusion. Fetal heart rate monitoring was performed during standard care with a Doppler ultrasound device (Philips Avalon-FM30) alone or with this Doppler ultrasound device simultaneously with one of four noninvasive electrocardiography devices (Nemo Fetal Monitoring System, Philips Avalon-Beltless, Demcon Dipha-16 and Dräger Infinity-M300). Performance was evaluated by: success rate, positive percent agreement, bias, 95% limits of agreement, regression line, root mean square error and visual agreement using FIGO guidelines. Patient experience was captured using a self-made questionnaire. Results: A total of 10 women were included per device. For fetal heart rate, Nemo performed best (success rate: 99.4%, positive percent agreement: 94.2%, root mean square error 5.1 BPM, bias: 0.5 BPM, 95% limits of agreement: −9.7 – 10.7 BPM, regression line: y = −0.1x + 11.1) and the cardiotocography tracings obtained simultaneously by Nemo and Avalon-FM30 received the same FIGO classification. Comparable results were found with the Avalon-Beltless from 36 weeks of gestation, whereas the Dipha-16 and Infinity-M300 performed significantly worse. The Avalon-Beltless, Nemo and Infinity-M300 closely matched the performance of the Avalon-FM30 for maternal heart rate, whereas the performance of the Dipha-16 deviated more. Patient experience scores were higher for the noninvasive electrocardiography devices. Conclusions: Both Nemo and Avalon-Beltless are suitable devices for (prolonged) noninvasive fetal heart rate monitoring, taking their intended use into account. But outside its intended use limit of 36 weeks’ gestation, the Avalon-Beltless performs less well, comparable to the Dipha-16 and Infinity-M300, making them currently unsuitable for (prolonged) noninvasive fetal heart rate monitoring. Noninvasive electrocardiography devices appear to be preferred due to greater comfort and mobility.</p

    Towards a quieter Neonatal Intensive Care Unit: Current approaches and design opportunities

    Get PDF
    Recent studies show that the well-being of patients and the performance of healthcare professionals in modern neonatal intensive care units (NICUs) are severely affected by the amount of auditory alarms and sound nuisance. This paper presents a semi-systematic review on the topic of environmental sound in the NICU, where current themes, insights, and limitations are highlighted. Furthermore, it outlines the results of an observation of the NICU environment and an interview with nurses at Erasmus Medical Center, in order to understand the users, their context, and the technology that can enable design interventions. The insights gathered from the literature and the users, together with a technology search, lead to potential design opportunities to be developed further. Based on these, we propose a technological solution towards a healthy sound environment in the NICU

    Plasma protein kinase activity enhanced by interferon is found in platelets

    Get PDF
    AbstractA protein kinase activity analogous to that found in interferon-treated HeLa cells is detectable in human plasma rich in platelets. This kinase activity is manifested by the phosphorylation of an endogenous Mr 72 000 protein which could be conveniently assayed after partial purification on poly(G)—Sepharose. Here, we show that the protein kinase system in the plasma consists of at least 2 components. The protein kinase is found to be localised in the platelet whereas most of the substrate (the Mr 72 000 protein) is found free in the plasma and a fraction of it associated with the surface of platelets

    A Search for Photons with Energies Above 2X10(17) eV Using Hybrid Data from the Low-Energy Extensions of the Pierre Auger Observatory

    Get PDF
    Ultra-high-energy photons with energies exceeding 10(17) eV offer a wealth of connections to different aspects of cosmic-ray astrophysics as well as to gamma-ray and neutrino astronomy. The recent observations of photons with energies in the 10(15) eV range further motivate searches for even higher-energy photons. In this paper, we present a search for photons with energies exceeding 2 x 10(17) eV using about 5.5 yr of hybrid data from the low-energy extensions of the Pierre Auger Observatory. The upper limits on the integral photon flux derived here are the most stringent ones to date in the energy region between 10(17) and 10(18) eV

    Possible interpretations of the joint observations of UHECR arrival directions using data recorded at the Telescope Array and the Pierre Auger Observatory

    Get PDF

    An Algorithm for Automatic Acoustic Alarm Recognition in the Neonatal Intensive Care Unit

    No full text
    Inside the Neonatal Intensive Care Unit (NICU), exposure to loud sounds such as acoustic medical alarms can have adverse effects on neonates, parents, and medical staff. With the aim of having an accurate overview of which and how often acoustic medical alarms occur, this paper presents a simple signal processing-based approach for detecting and recognizing automatically and permanently patient monitoring alarms inside the NICU. The proposed algorithm leverages from prior knowledge of the spectro-temporal structures of alarms to first detect each single occurrence of an alarm tone, and then group the detected tones into a known alarm pattern. A preliminary evaluation of the algorithm on a small set of 4-channel recordings capturing a simulated NICU soundscape shows that around 99% of the acoustic alarms are correctly recognized, and that around 99% of the recognized alarms are true alarms. The algorithm lends itself to efficient real-time implementation and to generalization to other alarm patterns as defined by the IEC 60601-1-8 standard.</p

    An Algorithm for Automatic Acoustic Alarm Recognition in the Neonatal Intensive Care Unit

    No full text
    Inside the Neonatal Intensive Care Unit (NICU), exposure to loud sounds such as acoustic medical alarms can have adverse effects on neonates, parents, and medical staff. With the aim of having an accurate overview of which and how often acoustic medical alarms occur, this paper presents a simple signal processing-based approach for detecting and recognizing automatically and permanently patient monitoring alarms inside the NICU. The proposed algorithm leverages from prior knowledge of the spectro-temporal structures of alarms to first detect each single occurrence of an alarm tone, and then group the detected tones into a known alarm pattern. A preliminary evaluation of the algorithm on a small set of 4-channel recordings capturing a simulated NICU soundscape shows that around 99% of the acoustic alarms are correctly recognized, and that around 99% of the recognized alarms are true alarms. The algorithm lends itself to efficient real-time implementation and to generalization to other alarm patterns as defined by the IEC 60601-1-8 standard

    Electrical Impedance Tomography as a monitoring tool during weaning from mechanical ventilation:an observational study during the spontaneous breathing trial

    Get PDF
    Background: Prolonged weaning from mechanical ventilation is associated with poor clinical outcome. Therefore, choosing the right moment for weaning and extubation is essential. Electrical Impedance Tomography (EIT) is a promising innovative lung monitoring technique, but its role in supporting weaning decisions is yet uncertain. We aimed to evaluate physiological trends during a T-piece spontaneous breathing trail (SBT) as measured with EIT and the relation between EIT parameters and SBT success or failure. Methods: This is an observational study in which twenty-four adult patients receiving mechanical ventilation performed an SBT. EIT monitoring was performed around the SBT. Multiple EIT parameters including the end-expiratory lung impedance (EELI), delta Tidal Impedance (ΔZ), Global Inhomogeneity index (GI), Rapid Shallow Breathing Index (RSBIEIT), Respiratory Rate (RREIT) and Minute Ventilation (MVEIT) were computed on a breath-by-breath basis from stable tidal breathing periods. Results: EELI values dropped after the start of the SBT (p &lt; 0.001) and did not recover to baseline after restarting mechanical ventilation. The ΔZ dropped (p &lt; 0.001) but restored to baseline within seconds after restarting mechanical ventilation. Five patients failed the SBT, the GI (p = 0.01) and transcutaneous CO2 (p &lt; 0.001) values significantly increased during the SBT in patients who failed the SBT compared to patients with a successful SBT. Conclusion: EIT has the potential to assess changes in ventilation distribution and quantify the inhomogeneity of the lungs during the SBT. High lung inhomogeneity was found during SBT failure. Insight into physiological trends for the individual patient can be obtained with EIT during weaning from mechanical ventilation, but its role in predicting weaning failure requires further study.</p

    Predictive Intelligent Control of Oxygenation (PRICO) in preterm infants on high flow nasal cannula support: A randomised cross-over study

    No full text
    Objective To investigate the efficacy of automated control of inspired oxygen (FiO2) by Predictive Intelligent Control of Oxygenation (PRICO) on the Fabian ventilator in maintaining oxygen saturation (SpO2) in preterm infants on high flow nasal cannula (HFNC) support. Design Single-centre randomised two-period crossover study. Setting Tertiary neonatal intensive care unit. Patients 27 preterm infants (gestational age (GA) 0.25. Intervention A 24-hour period on automated FiO2-control with PRICO compared with a 24-hour period on routine manual control (RMC) to maintain a SpO2 level within target range of 88%-95% measured at 30 s intervals. Main outcome measures Primary outcome: time spent within target range (88%-95%). Secondary outcomes: time spent above and below target range, in severe hypoxia (SpO2 98%), mean SpO2 and FiO2 and manual FiO2 adjustments. Results 15 patients received PRICO-RMC and 12 RMC-PRICO. The mean time within the target range increased with PRICO: 10.8% (95% CI 7.6 to 13.9). There was a decrease in time below target range: 7.6% (95% CI 4.2 to 11.0), above target range: 3.1% (95% CI 2.9 to 6.2) and in severe hypoxia: 0.9% (95% CI 1.5 to 0.2). We found no difference in time spent in severe hyperoxia. Mean FiO2 was higher during PRICO: 0.019 (95% CI 0.006 to 0.030). With PRICO there was a reduction of manual adjustments: 9/24 hours (95% CI 6 to 12). Conclusion In preterm infants on HFNC support, automated FiO2-control by PRICO is superior to RMC in maintaining SpO2 within target range. Further validation studies with a higher sample frequency and different ventilation modes are needed
    corecore