279 research outputs found
Exploring the circular economy through coatings in transport
This is the final version. Available on open access from Elsevier via the DOI in this recordCoatings are widely used in a range of aesthetic, protective and durable applications, often leading to extension of the in-service period of many components. There is sizable demand for coatings in the transport sector across road, rail, marine and air. However, the issue of materials circularity with consideration of their surface treatment is an under researched and often overlooked area. The aim of this paper is to explore challenges and enabling factors that can catalyse industrial growth of a new material, technology, or process by investigating coatings within the transport sector. We do this by studying six new or novel approaches that have garnered significant research interest in the last decade, set against system-level drivers and enablers of circularity. Our findings highlight the complications, assumptions and benefits of a circular transition. We conclude that policy and regulation play a key role in supporting or hindering the transition, and further consideration of material ‘lock-in’ is required to understand how materials can be phased out from a design standpoint.Engineering and Physical Sciences Research Council (EPSRC
Bone mineral health is sensitively related to environmental cadmium exposure- experimental and human data
Exposure to cadmium (Cd) is recognised as one of the risk factors for osteoporosis, although critical exposure levels and exact mechanisms are still unknown.
Here, we first confirmed that in male Wistar rats challenged orally with 6 different levels of Cd (0.3–10 mg/kg b.w.), over 28 days, there was a direct dose relationship to bone Cd concentration. Moreover, bone mineral content was significantly diminished by ∼15% (p < 0.0001) plateauing already at the lowest exposure level. For the other essential bone elements zinc (Zn) loss was most marked. Having established the sensitive metrics (measures of Cd exposure), we then applied them to 20 randomly selected human femoral head bone samples from 16 independent subjects. Bone Cd concentration was inversely proportional to trabecular bone mineral density and mineral (calcium) content and Zn content of bone, but not the donor's age.
Our findings, through direct bone analyses, support the emerging epidemiological view that bone health, adjudged by mineral density, is extremely sensitive to even background levels of environmental Cd. Importantly, however, our data also suggest that Cd may play an even greater role in compromised bone health than prior indirect estimates of exposure could reveal. Environmental Cd may be a substantially determining factor in osteoporosis and large cohort studies with direct bone analyses are now merited
Thermal properties, degradation and stability of poly(vinyl chloride) predegraded thermooxidatively in the presence of dioctyl phthalate plasticizer
Thermooxidative degradation of poly(vinyl chloride) (PVC) is inevitable during processing of PVC. Recycling of this polymer requires reprocessing in most of the cases, and due to the low thermal stability of PVC, it is of paramount importance to reveal the effect of thermooxidation on the thermal stability of this commercially important polymer. However, detailed systematic investigations are lacking on this crucial problem. In this study, the thermal behavior of PVCs thermooxidized in dilute dioctyl phthalate (DOP) (di(2-ethylhexyl) phthalate, DEHP) plasticizer was investigated by DSC, thermal gravimetry and isothermal degradation under inert atmosphere. It was found that thermooxidation leads to PVCs with certain extent of internal plasticization by DOP chemically bound to the PVC chains and by the oxidized chain segments as well. Thermogravimetry and isothermal dehydrochlorination under inert atmosphere revealed that even low extent of thermooxidation of PVC (0.4 mol% of HCl loss in 30 minutes at 200 °C) leads to dramatically decreased thermal stability of this polymer with 50-60 oC lower onset decomposition temperature than that of the virgin resin. This unexpected finding means that at least part of the oxidized moieties formed during oxidation of the PVC chains acts as initiators for thermal dehydrochlorination at relatively low temperatures, resulting in significant decrease of the thermal stability of the polymer. These striking results also indicate that the decreased thermal stability caused by thermooxidation in the course of the primary processing of this polymer should be taken into account in order to efficiently stabilize PVC products for reprocessing and recycling
The feed-in tariff in the UK : a case study focus on domestic photovoltaic systems
This paper explores the photovoltaic (PV) industry in the United Kingdom (UK) as experienced by those who are working with it directly and with consideration of current standards, module efficiencies and future environmental trends. The government's consultation on the comprehensive review for solar PV tariffs, proposes a reduction of the generation tariff for PV installations in the UK of more than 50%. The introduction of the Feed-In Tariffs scheme (FITs) has rapidly increased deployment of PV technologies at small scale since its introduction in April 2010. The central principle of FIT policies is to offer guaranteed prices for fixed periods to enable greater number of investors. A financial analysis was performed on two real-life installations in Cornwall, UK to determine the impact of proposed cuts to the FIT will make to a typical domestic PV system under 4 kW. The results show that a healthy Return on Investment (ROI) can still be made but that future installations should focus on off-setting electricity required from the national grid as a long term push for true sustainability rather than subsidised schemes. The profitability of future installations will have to be featured within in-service and end-of-service considerations such as the feed-in tariff, module efficiencies and the implications of costs associated with end-of-life disposal
Numerical visualization and optimization on the core penetration in multi-cavity co-injection molding with a bifurcation runner structure
[[abstract]]Co-Injection Molding and multi-cavity molding are common processes for plastic products manufacturing. These two systems are sometimes combined and applied in the manufacture of bifurcation-structure products. In the previous literature results, the dynamic behavior of the core penetration in co-injection multi-cavity molding with a bifurcation structure is quite complicated and the behavior is sensitive to injection flow rates, different materials, and other process conditions. However, how these influential factors truly affect the core penetration behavior and the detailed mechanism of core penetration behavior has not yet been fully understood. In this study, we focused on studying the multi-cavity co-injection system with a bifurcation runner structure. The results showed that when the skin-to-core ratio is fixed (say 72/28), the melt flow behavior of a co-injection system, utilizing the same material for both skin and core, is very similar to that of a single shot injection molding. Specifically, the non-symmetrical bifurcation runner structure will influence the flow behavior greatly and cause the core distribution imbalance between different cavities. Due to the geometric nature of the bifurcation runner design, this core distribution imbalance problem will still persist even if we modify the melt temperature, mold temperature, or even change the plastic material. Furthermore, when the skin-to-core ratio is fixed (say 72/28), the changes of the flow rate have very little effect on the core penetration result in the final molded product; the final molded product will still have a core distribution imbalance issue. However, we observed that when the flow rate is increased, the core material will occupy more volume space in the upstream portion of the runner and the core penetration distance will be reduced in the flow direction downstream. This feature is very useful to further manipulate the skin-core interface in a multi-cavity system. Moreover, regarding how to improve a poor inter-cavity balance of core material distribution, using a suitable adjustment of the skin-to-core ratio will be greatly helpful. However, the core break-through defect can be a common problem in co-injection molding when an unsuitable skin-to-core ratio is used. To prevent the core break-through defect, increasing the flow rate properly can be one of the good options that we can use. Hence, we concluded that a suitable adjustment of the skin-to-core ratio and a proper flow rate control can be used to optimize the core material distribution in multi-cavity co-injection molding with a bifurcation runner structure. Lastly, in order to validate our inference and the effectiveness of our proposal to improve the inter-cavity imbalance and core break-through problem, a series of experimental studies were performed. And, all experimental results are in good agreement with those of our numerical predictions to further validate the feasibility of our proposed method to gain a better control of the core material distribution with a bifurcation runner structure in multi-cavity co-injection molding.[[notice]]補æ£å®Œ
Prophylactic plasma exchange in CD46-associated atypical haemolytic uremic syndrome
Patients with atypical haemolytic uremic syndrome (aHUS) with a mutation in the gene encoding membrane cofactor protein (CD46) are known to have a better prognosis than those with mutations in factor H (CFH) or factor I (CFI), but a small number of the former still proceed to end-stage renal failure. Plasma therapy (PE) is the recommended approach to treat both acute episodes and prevent recurrences in aHUS, but studies have yet to show PE efficacy in aHUS associated with a CD46 mutation. The factors determining failure to treatment are not clear and may be related to the mutation involved or to insufficient treatment. Our experience of PE in a family of three sisters with CFH-associated aHUS suggests that intensive and prophylactic PE allows renal function to be maintained in both native kidneys and allografts. The success of this strategy has led us to use it in all cases of aHUS. Here, we describe the effect of this strategy in a child with aHUS and a CD46 mutation. The initial episode was treated with daily PE, resulting in the recovery of renal function. However, over the next 4Â years, there was a progressive decline in renal function to end-stage renal failure, with evidence of an on-going thrombotic microangiopathy despite continuous prophylactic PE. Prophylactic PE does not influence the natural course of aHUS and CD46 mutation
A novel closed-loop electromechanical stimulator to enhance osseointegration with immediate loading of dental implant restorations
Abstract: The degree of osseomechanical integration of dental implants is acutely sensitive to their mechanical environment. Bone, both as a tissue and structure, adapts its mass and architecture in response to loading conditions. Therefore, application of predefined controlled loads may be considered as a treatment option to promote early maturation of bone/implant interface prior to or in conjunction with crown/prosthesis attachment. Although many studies have established that the magnitude, rate of the applied strain, and frequency have significant effects on the osteogenic response, the actual specific relationships between strain parameters and frequency have not yet been fully defined. The purpose of this study was to develop a stimulator to apply defined mechanical stimuli to individual dental implants in vivo immediately after implantation, exploring the hypothesis that immediate controlled loading could enhance implant integration. An electromechanical device was developed, based on load values obtained using a two-dimensional finite element analysis of the bone/implant interface generating 1000 to 4000 me and operated at 30 and 3 Hz respectively. The device was then tested in a cadaveric pig mandible, and periosteal bone surface strains were recorded for potential future comparison with a three-dimensional finite element model to determine loading regimens to optimize interface strains and iterate the device for clinical use
Identification of the first ATRIP-deficient patient and novel mutations in ATR define a clinical spectrum for ATR-ATRIP Seckel Syndrome
A homozygous mutational change in the Ataxia-Telangiectasia and RAD3 related (ATR) gene was previously reported in two related families displaying Seckel Syndrome (SS). Here, we provide the first identification of a Seckel Syndrome patient with mutations in ATRIP, the gene encoding ATR-Interacting Protein (ATRIP), the partner protein of ATR required for ATR stability and recruitment to the site of DNA damage. The patient has compound heterozygous mutations in ATRIP resulting in reduced ATRIP and ATR expression. A nonsense mutational change in one ATRIP allele results in a C-terminal truncated protein, which impairs ATR-ATRIP interaction; the other allele is abnormally spliced. We additionally describe two further unrelated patients native to the UK with the same novel, heterozygous mutations in ATR, which cause dramatically reduced ATR expression. All patient-derived cells showed defective DNA damage responses that can be attributed to impaired ATR-ATRIP function. Seckel Syndrome is characterised by microcephaly and growth delay, features also displayed by several related disorders including Majewski (microcephalic) osteodysplastic primordial dwarfism (MOPD) type II and Meier-Gorlin Syndrome (MGS). The identification of an ATRIP-deficient patient provides a novel genetic defect for Seckel Syndrome. Coupled with the identification of further ATR-deficient patients, our findings allow a spectrum of clinical features that can be ascribed to the ATR-ATRIP deficient sub-class of Seckel Syndrome. ATR-ATRIP patients are characterised by extremely severe microcephaly and growth delay, microtia (small ears), micrognathia (small and receding chin), and dental crowding. While aberrant bone development was mild in the original ATR-SS patient, some of the patients described here display skeletal abnormalities including, in one patient, small patellae, a feature characteristically observed in Meier-Gorlin Syndrome. Collectively, our analysis exposes an overlapping clinical manifestation between the disorders but allows an expanded spectrum of clinical features for ATR-ATRIP Seckel Syndrome to be define
Factor H autoantibody is associated with atypical hemolytic uremic syndrome in children in the United Kingdom and Ireland
Factor H autoantibodies can impair complement
regulation, resulting in atypical hemolytic uremic
syndrome, predominantly in childhood. There are no trials
investigating treatment, and clinical practice is only
informed by retrospective cohort analysis. Here we
examined 175 children presenting with atypical hemolytic
uremic syndrome in the United Kingdom and Ireland for
factor H autoantibodies that included 17 children with
titers above the international standard. Of the 17, seven
had a concomitant rare genetic variant in a gene encoding
a complement pathway component or regulator. Two
children received supportive treatment; both developed
established renal failure. Plasma exchange was associated
with a poor rate of renal recovery in seven of 11 treated. Six
patients treated with eculizumab recovered renal function.
Contrary to global practice, immunosuppressive therapy to
prevent relapse in plasma exchange–treated patients was
not adopted due to concerns over treatment-associated
complications. Without immunosuppression, the relapse
rate was high (five of seven). However, reintroduction of
treatment resulted in recovery of renal function. All
patients treated with eculizumab achieved sustained
remission. Five patients received renal transplants without
specific factor H autoantibody–targeted treatment with
recurrence in one who also had a functionally significant CFI mutation. Thus, our current practice is to initiate
eculizumab therapy for treatment of factor H
autoantibody–mediated atypical hemolytic uremic
syndrome rather than plasma exchange with or without
immunosuppression. Based on this retrospective analysis
we see no suggestion of inferior treatment, albeit the
strength of our conclusions is limited by the small sample siz
Genetic Variation in VEGF Does Not Contribute Significantly to the Risk of Congenital Cardiovascular Malformation
Several previous studies have investigated the role of common promoter variants in the vascular endothelial growth factor (VEGF) gene in causing congenital cardiovascular malformation (CVM). However, results have been discrepant between studies and no study to date has comprehensively characterised variation throughout the gene. We genotyped 771 CVM cases, of whom 595 had the outflow tract malformation Tetralogy of Fallot (TOF), and carried out TDT and case-control analyses using haplotype-tagging SNPs in VEGF. We carried out a meta-analysis of previous case-control or family-based studies that had typed VEGF promoter SNPs, which included an additional 570 CVM cases. To identify rare variants potentially causative of CVM, we carried out mutation screening in all VEGF exons and splice sites in 93 TOF cases. There was no significant effect of any VEGF haplotype-tagging SNP on the risk of CVM in our analyses of 771 probands. When the results of this and all previous studies were combined, there was no significant effect of the VEGF promoter SNPs rs699947 (OR 1.05 [95% CI 0.95–1.17]); rs1570360 (OR 1.17 [95% CI 0.99–1.26]); and rs2010963 (OR 1.04 [95% CI 0.93–1.16]) on the risk of CVM in 1341 cases. Mutation screening of 93 TOF cases revealed no VEGF coding sequence variants and no changes at splice consensus sequences. Genetic variation in VEGF appears to play a small role, if any, in outflow tract CVM susceptibility
- …