177 research outputs found
Substance P Causes Seizures in Neurocysticercosis
Neurocysticercosis (NCC), a helminth infection of the brain, is a major cause of seizures. The mediators responsible for seizures in NCC are unknown, and their management remains controversial. Substance P (SP) is a neuropeptide produced by neurons, endothelial cells and immunocytes. The current studies examined the hypothesis that SP mediates seizures in NCC. We demonstrated by immunostaining that 5 of 5 brain biopsies from NCC patients contained substance P (SP)-positive (+) cells adjacent to but not distant from degenerating worms; no SP+ cells were detected in uninfected brains. In a rodent model of NCC, seizures were induced after intrahippocampal injection of SP alone or after injection of extracts of cysticercosis granuloma obtained from infected wild type (WT), but not from infected SP precursor-deficient mice. Seizure activity correlated with SP levels within WT granuloma extracts and was prevented by intrahippocampal pre-injection of SP receptor antagonist. Furthermore, extracts of granulomas from WT mice caused seizures when injected into the hippocampus of WT mice, but not when injected into SP receptor (NK1R) deficient mice. These findings indicate that SP causes seizures in NCC, and, suggests that seizures in NCC in humans may be prevented and/or treated with SP-receptor antagonists
Star Formation and Dynamics in the Galactic Centre
The centre of our Galaxy is one of the most studied and yet enigmatic places
in the Universe. At a distance of about 8 kpc from our Sun, the Galactic centre
(GC) is the ideal environment to study the extreme processes that take place in
the vicinity of a supermassive black hole (SMBH). Despite the hostile
environment, several tens of early-type stars populate the central parsec of
our Galaxy. A fraction of them lie in a thin ring with mild eccentricity and
inner radius ~0.04 pc, while the S-stars, i.e. the ~30 stars closest to the
SMBH (<0.04 pc), have randomly oriented and highly eccentric orbits. The
formation of such early-type stars has been a puzzle for a long time: molecular
clouds should be tidally disrupted by the SMBH before they can fragment into
stars. We review the main scenarios proposed to explain the formation and the
dynamical evolution of the early-type stars in the GC. In particular, we
discuss the most popular in situ scenarios (accretion disc fragmentation and
molecular cloud disruption) and migration scenarios (star cluster inspiral and
Hills mechanism). We focus on the most pressing challenges that must be faced
to shed light on the process of star formation in the vicinity of a SMBH.Comment: 68 pages, 35 figures; invited review chapter, to be published in
expanded form in Haardt, F., Gorini, V., Moschella, U. and Treves, A.,
'Astrophysical Black Holes'. Lecture Notes in Physics. Springer 201
Consensus statement from the 2014 International Microdialysis Forum.
Microdialysis enables the chemistry of the extracellular interstitial space to be monitored. Use of this technique in patients with acute brain injury has increased our understanding of the pathophysiology of several acute neurological disorders. In 2004, a consensus document on the clinical application of cerebral microdialysis was published. Since then, there have been significant advances in the clinical use of microdialysis in neurocritical care. The objective of this review is to report on the International Microdialysis Forum held in Cambridge, UK, in April 2014 and to produce a revised and updated consensus statement about its clinical use including technique, data interpretation, relationship with outcome, role in guiding therapy in neurocritical care and research applications.We gratefully acknowledge financial support for participants as follows: P.J.H. - National Institute for Health Research (NIHR) Professorship and the NIHR Biomedical Research Centre, Cambridge; I.J. – Medical Research Council (G1002277 ID 98489); A. H. - Medical Research Council, Royal College of Surgeons of England; K.L.H.C. - NIHR Biomedical Research Centre, Cambridge (Neuroscience Theme; Brain Injury and Repair Theme); M.G.B. - Wellcome Trust Dept Health Healthcare Innovation Challenge Fund (HICF-0510-080); L. H. - The Swedish Research Council, VINNOVA and Uppsala Berzelii Technology Centre for Neurodiagnostics; S. M. - Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico; D.K.M. - NIHR Senior Investigator Award to D.K.M., NIHR Cambridge Biomedical Research Centre (Neuroscience Theme), FP7 Program of the European Union; M. O. - Swiss National Science Foundation and the Novartis Foundation for Biomedical Research; J.S. - Fondo de Investigación Sanitaria (Instituto de Salud Carlos III) (PI11/00700) co-financed by the European Regional Development; M.S. – NIHR University College London Hospitals Biomedical Research Centre; N. S. - Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico.This is the final version of the article. It first appeared from Springer via http://dx.doi.org/10.1007/s00134-015-3930-
Metagenomic Profile of the Bacterial Communities Associated with Ixodes ricinus Ticks
Assessment of the microbial diversity residing in arthropod vectors of medical importance is crucial for monitoring endemic infections, for surveillance of newly emerging zoonotic pathogens, and for unraveling the associated bacteria within its host. The tick Ixodes ricinus is recognized as the primary European vector of disease-causing bacteria in humans. Despite I. ricinus being of great public health relevance, its microbial communities remain largely unexplored to date. Here we evaluate the pathogen-load and the microbiome in single adult I. ricinus by using 454- and Illumina-based metagenomic approaches. Genomic DNA-derived sequences were taxonomically profiled using a computational approach based on the BWA algorithm, allowing for the identification of known tick-borne pathogens at the strain level and the putative tick core microbiome. Additionally, we assessed and compared the bacterial taxonomic profile in nymphal and adult I. ricinus pools collected from two distinct geographic regions in Northern Italy by means of V6-16S rRNA amplicon pyrosequencing and community based ecological analysis. A total of 108 genera belonging to representatives of all bacterial phyla were detected and a rapid qualitative assessment for pathogenic bacteria, such as Borrelia, Rickettsia and Candidatus Neoehrlichia, and for other bacteria with mutualistic relationship or undetermined function, such as Wolbachia and Rickettsiella, was possible. Interestingly, the ecological analysis revealed that the bacterial community structure differed between the examined geographic regions and tick life stages. This finding suggests that the environmental context (abiotic and biotic factors) and host-selection behaviors affect their microbiome
No evidence that genetic variation in the myeloid-derived suppressor cell pathway influences ovarian cancer survival
BACKGROUND: The precise mechanism by which the immune system is adversely affected in cancer patients remains poorly understood, but the accumulation of immune suppressive/pro-tumorigenic myeloid-derived suppressor cells (MDSCs) is thought to be one prominent mechanism contributing to immunologic tolerance of malignant cells in epithelial ovarian cancer (EOC). To this end, we hypothesized genetic variation in MDSC pathway genes would be associated with survival after EOC diagnoses. METHODS: We measured the hazard of death due to EOC within 10 years of diagnosis, overall and by invasive subtype, attributable to SNPs in 24 genes relevant in the MDSC pathway in 10,751 women diagnosed with invasive EOC. Versatile Gene-based Association study (VEGAS) and the Admixture Likelihood method (AML), were used to test gene and pathway associations with survival. RESULTS: We did not identify individual SNPs that were significantly associated with survival after correction for multiple testing (p<3.5 x 10-5), nor did we identify significant associations between the MDSC pathway overall, or the 24 individual genes and EOC survival. CONCLUSIONS: In this well-powered analysis, we observed no evidence that inherited variations in MDSC-associated SNPs, individual genes, or the collective genetic pathway contributed to EOC survival outcomes. IMPACT: Common inherited variation in genes relevant to MDSCs were not associated with survival in women diagnosed with invasive EOC
Assessment of variation in immunosuppressive pathway genes reveals TGFBR2 to be associated with risk of clear cell ovarian cancer
BACKGROUND: Regulatory T (Treg) cells, a subset of CD4+ T lymphocytes, are mediators of immunosuppression in cancer, and, thus, variants in genes encoding Treg cell immune molecules could be associated with ovarian cancer. METHODS: In a population of 15,596 epithelial ovarian cancer (EOC) cases and 23,236 controls, we measured genetic associations of 1,351 SNPs in Treg cell pathway genes with odds of ovarian cancer and tested pathway and gene-level associations, overall and by histotype, for the 25 genes, using the admixture likelihood (AML) method. The most significant single SNP associations were tested for correlation with expression levels in 44 ovarian cancer patients. RESULTS: The most significant global associations for all genes in the pathway were seen in endometrioid (p = 0.082) and clear cell (p = 0.083), with the most significant gene level association seen with TGFBR2 (p = 0.001) and clear cell EOC. Gene associations with histotypes at p < 0.05 included: IL12 (p = 0.005 and p = 0.008, serous and high-grade serous, respectively), IL8RA (p = 0.035, endometrioid and mucinous), LGALS1 (p = 0.03, mucinous), STAT5B (p = 0.022, clear cell), TGFBR1 (p = 0.021 endometrioid) and TGFBR2 (p = 0.017 and p = 0.025, endometrioid and mucinous, respectively). CONCLUSIONS: Common inherited gene variation in Treg cell pathways shows some evidence of germline genetic contribution to odds of EOC that varies by histologic subtype and may be associated with mRNA expression of immune-complex receptor in EOC patients
Cell-specific microarray profiling experiments reveal a comprehensive picture of gene expression in the C. elegans nervous system
A novel strategy for profiling Caenorhabditis elegans cells identifies transcripts highly enriched in either the embryonic or larval C. elegans nervous system, including 19 conserved transcripts of unknown function that are also expressed in the mammalian brain
Multi-messenger observations of a binary neutron star merger
On 2017 August 17 a binary neutron star coalescence candidate (later designated GW170817) with merger time 12:41:04 UTC was observed through gravitational waves by the Advanced LIGO and Advanced Virgo detectors. The Fermi Gamma-ray Burst Monitor independently detected a gamma-ray burst (GRB 170817A) with a time delay of ~1.7 s with respect to the merger time. From the gravitational-wave signal, the source was initially localized to a sky region of 31 deg2 at a luminosity distance of 40+8-8 Mpc and with component masses consistent with neutron stars. The component masses were later measured to be in the range 0.86 to 2.26 Mo. An extensive observing campaign was launched across the electromagnetic spectrum leading to the discovery of a bright optical transient (SSS17a, now with the IAU identification of AT 2017gfo) in NGC 4993 (at ~40 Mpc) less than 11 hours after the merger by the One- Meter, Two Hemisphere (1M2H) team using the 1 m Swope Telescope. The optical transient was independently detected by multiple teams within an hour. Subsequent observations targeted the object and its environment. Early ultraviolet observations revealed a blue transient that faded within 48 hours. Optical and infrared observations showed a redward evolution over ~10 days. Following early non-detections, X-ray and radio emission were discovered at the transient’s position ~9 and ~16 days, respectively, after the merger. Both the X-ray and radio emission likely arise from a physical process that is distinct from the one that generates the UV/optical/near-infrared emission. No ultra-high-energy gamma-rays and no neutrino candidates consistent with the source were found in follow-up searches. These observations support the hypothesis that GW170817 was produced by the merger of two neutron stars in NGC4993 followed by a short gamma-ray burst (GRB 170817A) and a kilonova/macronova powered by the radioactive decay of r-process nuclei synthesized in the ejecta
- …