960 research outputs found
Non-symmetric trapped surfaces in the Schwarzschild and Vaidya spacetimes
Marginally trapped surfaces (MTSs) are commonly used in numerical relativity
to locate black holes. For dynamical black holes, it is not known generally if
this procedure is sufficiently reliable. Even for Schwarzschild black holes,
Wald and Iyer constructed foliations which come arbitrarily close to the
singularity but do not contain any MTSs. In this paper, we review the Wald-Iyer
construction, discuss some implications for numerical relativity, and
generalize to the well known Vaidya spacetime describing spherically symmetric
collapse of null dust. In the Vaidya spacetime, we numerically locate
non-spherically symmetric trapped surfaces which extend outside the standard
spherically symmetric trapping horizon. This shows that MTSs are common in this
spacetime and that the event horizon is the most likely candidate for the
boundary of the trapped region.Comment: 4 pages, 3 figures; v2: minor modifications; v3: clarified
conclusion
The Asymptotic Falloff of Local Waveform Measurements in Numerical Relativity
We examine current numerical relativity computations of gravitational waves,
which typically determine the asymptotic waves at infinity by extrapolation
from finite (small) radii. Using simulations of a black hole binary with
accurate wave extraction at , we show that extrapolations from the
near-zone are self-consistent in approximating measurements at this radius,
although with a somewhat reduced accuracy. We verify that is the
dominant asymptotic contribution to the gravitational energy (as required by
the peeling theorem) but point out that gauge effects may complicate the
interpretation of the other Weyl components
Falloff of the Weyl scalars in binary black hole spacetimes
The peeling theorem of general relativity predicts that the Weyl curvature
scalars Psi_n (n=0...4), when constructed from a suitable null tetrad in an
asymptotically flat spacetime, fall off asymptotically as r^(n-5) along
outgoing radial null geodesics. This leads to the interpretation of Psi_4 as
outgoing gravitational radiation at large distances from the source. We have
performed numerical simulations in full general relativity of a binary black
hole inspiral and merger, and have computed the Weyl scalars in the standard
tetrad used in numerical relativity. In contrast with previous results, we
observe that all the Weyl scalars fall off according to the predictions of the
theorem.Comment: 7 pages, 3 figures, published versio
Accurate numerical simulations of inspiralling binary neutron stars and their comparison with effective-one-body analytical models
Binary neutron-star systems represent one of the most promising sources of
gravitational waves. In order to be able to extract important information,
notably about the equation of state of matter at nuclear density, it is
necessary to have in hands an accurate analytical model of the expected
waveforms. Following our recent work, we here analyze more in detail two
general-relativistic simulations spanning about 20 gravitational-wave cycles of
the inspiral of equal-mass binary neutron stars with different compactnesses,
and compare them with a tidal extension of the effective-one-body (EOB)
analytical model. The latter tidally extended EOB model is analytically
complete up to the 1.5 post-Newtonian level, and contains an analytically
undetermined parameter representing a higher-order amplification of tidal
effects. We find that, by calibrating this single parameter, the EOB model can
reproduce, within the numerical error, the two numerical waveforms essentially
up to the merger. By contrast, analytical models (either EOB, or Taylor-T4)
that do not incorporate such a higher-order amplification of tidal effects,
build a dephasing with respect to the numerical waveforms of several radians.Comment: 25 pages, 17 figs. Matched published versio
High accuracy binary black hole simulations with an extended wave zone
We present results from a new code for binary black hole evolutions using the
moving-puncture approach, implementing finite differences in generalised
coordinates, and allowing the spacetime to be covered with multiple
communicating non-singular coordinate patches. Here we consider a regular
Cartesian near zone, with adapted spherical grids covering the wave zone. The
efficiencies resulting from the use of adapted coordinates allow us to maintain
sufficient grid resolution to an artificial outer boundary location which is
causally disconnected from the measurement. For the well-studied test-case of
the inspiral of an equal-mass non-spinning binary (evolved for more than 8
orbits before merger), we determine the phase and amplitude to numerical
accuracies better than 0.010% and 0.090% during inspiral, respectively, and
0.003% and 0.153% during merger. The waveforms, including the resolved higher
harmonics, are convergent and can be consistently extrapolated to
throughout the simulation, including the merger and ringdown. Ringdown
frequencies for these modes (to ) match perturbative
calculations to within 0.01%, providing a strong confirmation that the remnant
settles to a Kerr black hole with irreducible mass and spin $S_f/M_f^2 = 0.686923 \pm 10\times10^{-6}
High efficiency thermionic converter studies
Research in thermionic energy conversion technology is reported. The objectives were to produce converters suitable for use in out of core space reactors, radioisotope generators, and solar satellites. The development of emitter electrodes that operate at low cesium pressure, stable low work function collector electrodes, and more efficient means of space charge neutralization were investigated to improve thermionic converter performance. Potential improvements in collector properties were noted with evaporated thin film barium oxide coatings. Experiments with cesium carbonate suggest this substance may provide optimum combinations of cesium and oxygen for thermionic conversion
Enabling EASEY deployment of containerized applications for future HPC systems
The upcoming exascale era will push the changes in computing architecture
from classical CPU-based systems in hybrid GPU-heavy systems with much higher
levels of complexity. While such clusters are expected to improve the
performance of certain optimized HPC applications, it will also increase the
difficulties for those users who have yet to adapt their codes or are starting
from scratch with new programming paradigms. Since there are still no
comprehensive automatic assistance mechanisms to enhance application
performance on such systems, we are proposing a support framework for future
HPC architectures, called EASEY (Enable exASclae for EverYone). The solution
builds on a layered software architecture, which offers different mechanisms on
each layer for different tasks of tuning. This enables users to adjust the
parameters on each of the layers, thereby enhancing specific characteristics of
their codes. We introduce the framework with a Charliecloud-based solution,
showcasing the LULESH benchmark on the upper layers of our framework. Our
approach can automatically deploy optimized container computations with
negligible overhead and at the same time reduce the time a scientist needs to
spent on manual job submission configurations.Comment: International Conference on Computational Science ICCS2020, 13 page
The Role of Haptic Expectations in Reaching to Grasp: From Pantomime to Natural Grasps and Back Again
© Copyright © 2020 Whitwell, Katz, Goodale and Enns. When we reach to pick up an object, our actions are effortlessly informed by the object’s spatial information, the position of our limbs, stored knowledge of the object’s material properties, and what we want to do with the object. A substantial body of evidence suggests that grasps are under the control of “automatic, unconscious” sensorimotor modules housed in the “dorsal stream” of the posterior parietal cortex. Visual online feedback has a strong effect on the hand’s in-flight grasp aperture. Previous work of ours exploited this effect to show that grasps are refractory to cued expectations for visual feedback. Nonetheless, when we reach out to pretend to grasp an object (pantomime grasp), our actions are performed with greater cognitive effort and they engage structures outside of the dorsal stream, including the ventral stream. Here we ask whether our previous finding would extend to cued expectations for haptic feedback. Our method involved a mirror apparatus that allowed participants to see a “virtual” target cylinder as a reflection in the mirror at the start of all trials. On “haptic feedback” trials, participants reached behind the mirror to grasp a size-matched cylinder, spatially coincident with the virtual one. On “no-haptic feedback” trials, participants reached behind the mirror and grasped into “thin air” because no cylinder was present. To manipulate haptic expectation, we organized the haptic conditions into blocked, alternating, and randomized schedules with and without verbal cues about the availability of haptic feedback. Replicating earlier work, we found the strongest haptic effects with the blocked schedules and the weakest effects in the randomized uncued schedule. Crucially, the haptic effects in the cued randomized schedule was intermediate. An analysis of the influence of the upcoming and immediately preceding haptic feedback condition in the cued and uncued random schedules showed that cuing the upcoming haptic condition shifted the haptic influence on grip aperture from the immediately preceding trial to the upcoming trial. These findings indicate that, unlike cues to the availability of visual feedback, participants take advantage of cues to the availability of haptic feedback, flexibly engaging pantomime, and natural modes of grasping to optimize the movement
Cactus Framework: Black Holes to Gamma Ray Bursts
Gamma Ray Bursts (GRBs) are intense narrowly-beamed flashes of gamma-rays of cosmological origin. They are among the most scientifically interesting astrophysical systems, and the riddle concerning their central engines and emission mechanisms is one of the most complex and challenging problems of astrophysics today. In this article we outline our petascale approach to the GRB problem and discuss the computational toolkits and numerical codes that are currently in use and that will be scaled up to run on emerging petaflop scale computing platforms in the near future. Petascale computing will require additional ingredients over conventional parallelism. We consider some of the challenges which will be caused by future petascale architectures, and discuss our plans for the future development of the Cactus framework and its applications to meet these challenges in order to profit from these new architectures
Binary neutron-star mergers with Whisky and SACRA: First quantitative comparison of results from independent general-relativistic hydrodynamics codes
We present the first quantitative comparison of two independent
general-relativistic hydrodynamics codes, the Whisky code and the SACRA code.
We compare the output of simulations starting from the same initial data and
carried out with the configuration (numerical methods, grid setup, resolution,
gauges) which for each code has been found to give consistent and sufficiently
accurate results, in particular in terms of cleanness of gravitational
waveforms. We focus on the quantities that should be conserved during the
evolution (rest mass, total mass energy, and total angular momentum) and on the
gravitational-wave amplitude and frequency. We find that the results produced
by the two codes agree at a reasonable level, with variations in the different
quantities but always at better than about 10%.Comment: Published on Phys. Rev.
- …