5,497 research outputs found
Distributed Recursive Least-Squares: Stability and Performance Analysis
The recursive least-squares (RLS) algorithm has well-documented merits for
reducing complexity and storage requirements, when it comes to online
estimation of stationary signals as well as for tracking slowly-varying
nonstationary processes. In this paper, a distributed recursive least-squares
(D-RLS) algorithm is developed for cooperative estimation using ad hoc wireless
sensor networks. Distributed iterations are obtained by minimizing a separable
reformulation of the exponentially-weighted least-squares cost, using the
alternating-minimization algorithm. Sensors carry out reduced-complexity tasks
locally, and exchange messages with one-hop neighbors to consent on the
network-wide estimates adaptively. A steady-state mean-square error (MSE)
performance analysis of D-RLS is conducted, by studying a stochastically-driven
`averaged' system that approximates the D-RLS dynamics asymptotically in time.
For sensor observations that are linearly related to the time-invariant
parameter vector sought, the simplifying independence setting assumptions
facilitate deriving accurate closed-form expressions for the MSE steady-state
values. The problems of mean- and MSE-sense stability of D-RLS are also
investigated, and easily-checkable sufficient conditions are derived under
which a steady-state is attained. Without resorting to diminishing step-sizes
which compromise the tracking ability of D-RLS, stability ensures that per
sensor estimates hover inside a ball of finite radius centered at the true
parameter vector, with high-probability, even when inter-sensor communication
links are noisy. Interestingly, computer simulations demonstrate that the
theoretical findings are accurate also in the pragmatic settings whereby
sensors acquire temporally-correlated data.Comment: 30 pages, 4 figures, submitted to IEEE Transactions on Signal
Processin
Robust PCA as Bilinear Decomposition with Outlier-Sparsity Regularization
Principal component analysis (PCA) is widely used for dimensionality
reduction, with well-documented merits in various applications involving
high-dimensional data, including computer vision, preference measurement, and
bioinformatics. In this context, the fresh look advocated here permeates
benefits from variable selection and compressive sampling, to robustify PCA
against outliers. A least-trimmed squares estimator of a low-rank bilinear
factor analysis model is shown closely related to that obtained from an
-(pseudo)norm-regularized criterion encouraging sparsity in a matrix
explicitly modeling the outliers. This connection suggests robust PCA schemes
based on convex relaxation, which lead naturally to a family of robust
estimators encompassing Huber's optimal M-class as a special case. Outliers are
identified by tuning a regularization parameter, which amounts to controlling
sparsity of the outlier matrix along the whole robustification path of (group)
least-absolute shrinkage and selection operator (Lasso) solutions. Beyond its
neat ties to robust statistics, the developed outlier-aware PCA framework is
versatile to accommodate novel and scalable algorithms to: i) track the
low-rank signal subspace robustly, as new data are acquired in real time; and
ii) determine principal components robustly in (possibly) infinite-dimensional
feature spaces. Synthetic and real data tests corroborate the effectiveness of
the proposed robust PCA schemes, when used to identify aberrant responses in
personality assessment surveys, as well as unveil communities in social
networks, and intruders from video surveillance data.Comment: 30 pages, submitted to IEEE Transactions on Signal Processin
Load curve data cleansing and imputation via sparsity and low rank
The smart grid vision is to build an intelligent power network with an
unprecedented level of situational awareness and controllability over its
services and infrastructure. This paper advocates statistical inference methods
to robustify power monitoring tasks against the outlier effects owing to faulty
readings and malicious attacks, as well as against missing data due to privacy
concerns and communication errors. In this context, a novel load cleansing and
imputation scheme is developed leveraging the low intrinsic-dimensionality of
spatiotemporal load profiles and the sparse nature of "bad data.'' A robust
estimator based on principal components pursuit (PCP) is adopted, which effects
a twofold sparsity-promoting regularization through an -norm of the
outliers, and the nuclear norm of the nominal load profiles. Upon recasting the
non-separable nuclear norm into a form amenable to decentralized optimization,
a distributed (D-) PCP algorithm is developed to carry out the imputation and
cleansing tasks using networked devices comprising the so-termed advanced
metering infrastructure. If D-PCP converges and a qualification inequality is
satisfied, the novel distributed estimator provably attains the performance of
its centralized PCP counterpart, which has access to all networkwide data.
Computer simulations and tests with real load curve data corroborate the
convergence and effectiveness of the novel D-PCP algorithm.Comment: 8 figures, submitted to IEEE Transactions on Smart Grid - Special
issue on "Optimization methods and algorithms applied to smart grid
Recovery of Low-Rank Plus Compressed Sparse Matrices with Application to Unveiling Traffic Anomalies
Given the superposition of a low-rank matrix plus the product of a known fat
compression matrix times a sparse matrix, the goal of this paper is to
establish deterministic conditions under which exact recovery of the low-rank
and sparse components becomes possible. This fundamental identifiability issue
arises with traffic anomaly detection in backbone networks, and subsumes
compressed sensing as well as the timely low-rank plus sparse matrix recovery
tasks encountered in matrix decomposition problems. Leveraging the ability of
- and nuclear norms to recover sparse and low-rank matrices, a convex
program is formulated to estimate the unknowns. Analysis and simulations
confirm that the said convex program can recover the unknowns for sufficiently
low-rank and sparse enough components, along with a compression matrix
possessing an isometry property when restricted to operate on sparse vectors.
When the low-rank, sparse, and compression matrices are drawn from certain
random ensembles, it is established that exact recovery is possible with high
probability. First-order algorithms are developed to solve the nonsmooth convex
optimization problem with provable iteration complexity guarantees. Insightful
tests with synthetic and real network data corroborate the effectiveness of the
novel approach in unveiling traffic anomalies across flows and time, and its
ability to outperform existing alternatives.Comment: 38 pages, submitted to the IEEE Transactions on Information Theor
In-network Sparsity-regularized Rank Minimization: Algorithms and Applications
Given a limited number of entries from the superposition of a low-rank matrix
plus the product of a known fat compression matrix times a sparse matrix,
recovery of the low-rank and sparse components is a fundamental task subsuming
compressed sensing, matrix completion, and principal components pursuit. This
paper develops algorithms for distributed sparsity-regularized rank
minimization over networks, when the nuclear- and -norm are used as
surrogates to the rank and nonzero entry counts of the sought matrices,
respectively. While nuclear-norm minimization has well-documented merits when
centralized processing is viable, non-separability of the singular-value sum
challenges its distributed minimization. To overcome this limitation, an
alternative characterization of the nuclear norm is adopted which leads to a
separable, yet non-convex cost minimized via the alternating-direction method
of multipliers. The novel distributed iterations entail reduced-complexity
per-node tasks, and affordable message passing among single-hop neighbors.
Interestingly, upon convergence the distributed (non-convex) estimator provably
attains the global optimum of its centralized counterpart, regardless of
initialization. Several application domains are outlined to highlight the
generality and impact of the proposed framework. These include unveiling
traffic anomalies in backbone networks, predicting networkwide path latencies,
and mapping the RF ambiance using wireless cognitive radios. Simulations with
synthetic and real network data corroborate the convergence of the novel
distributed algorithm, and its centralized performance guarantees.Comment: 30 pages, submitted for publication on the IEEE Trans. Signal Proces
P450BM3-Catalyzed Oxidations Employing Dual Functional Small Molecules
A set of dual functional small molecules (DFSMs) containing different amino acids
has been synthesized and employed together with three different variants of the cytochrome
P450 monooxygenase P450BM3 from Bacillus megaterium in H2O2-dependent oxidation reactions.
These DFSMs enhance P450BM3 activity with hydrogen peroxide as an oxidant, converting these
enzymes into formal peroxygenases. This system has been employed for the catalytic epoxidation of
styrene and in the sulfoxidation of thioanisole. Various P450BM3 variants have been evaluated in
terms of activity and selectivity of the peroxygenase reactions.MINECO-CTQ2016-76908-C2-1,2-PComisión Europea de Investigación-ERC-648026Unión Europea-H2020-BBI-PPP-2015-2-1-720297Organización Holandesa de Investigación CientÃfica (VICI)-724.014.00
- …