73 research outputs found

    Extensive antimicrobial resistance mobilization via Multicopy Plasmid Encapsidation mediated by temperate phages

    Full text link
    Objectives: To investigate the relevance of multicopy plasmids in antimicrobial resistance and assess their mobilization mediated by phage particles Methods: Several databases with complete sequences of plasmids and annotated genes were analysed. The 16S methyltransferase gene armA conferring high-level aminoglycoside resistance was used as a marker in eight different plasmids, from different incompatibility groups, and with differing sizes and plasmid copy numbers. All plasmids were transformed into Escherichia coli bearing one of four different lysogenic phages. Upon induction, encapsidation of armA in phage particles was evaluated using qRT-PCR and Southern blotting. Results: Multicopy plasmids carry a vast set of emerging clinically important antimicrobial resistance genes. However, 60% of these plasmids do not bear mobility (MOB) genes. When carried on these multicopy plasmids, mobilization of a marker gene armA into phage capsids was up to 10000 times more frequent than when it was encoded by a large plasmid with a low copy number. Conclusions: Multicopy plasmids and phages, two major mobile genetic elements (MGE) in bacteria, represent a novel high-efficiency transmission route of antimicrobial resistance genes that deserves further investigation

    Portable Differential Detection of CTX-M ESBL Gene Variants, blaCTX-M-1 and blaCTX-M-15, from Escherichia coli Isolates and Animal Fecal Samples Using Loop-Primer Endonuclease Cleavage Loop-Mediated Isothermal Amplification

    Get PDF
    Cefotaximase-Munich (CTX-M) extended-spectrum beta-lactamase (ESBL) enzymes produced by Enterobacteriaceae confer resistance to clinically relevant third-generation cephalosporins. CTX-M group 1 variants, CTX-M-1 and CTX-M-15, are the leading ESBL-producing Enterobacteriaceae associated with animal and human infection, respectively, and are an increasing antimicrobial resistance (AMR) global health concern. The blaCTX-M-1 and blaCTX-M-15 genes encoding these variants have an approximate nucleotide sequence similarity of 98.7%, making effective differential diagnostic monitoring difficult. Loop-primer endonuclease cleavage loop-mediated isothermal amplification (LEC-LAMP) enables rapid real-time multiplex pathogen detection with single-base specificity and portable on-site testing. We have developed an internally controlled multiplex CTX-M-1/15 LEC-LAMP assay for the differential detection of blaCTX-M-1 and blaCTX-M-15. Assay analytical specificity was established using a panel of human, animal, and environmental Escherichia coli isolates positive for blaCTX-M-1 (n = 18), blaCTX-M-15 (n = 35), and other closely related blaCTX-Ms (n = 38) from Ireland, Germany, and Portugal, with analytical sensitivity determined using probit regression analysis. Animal fecal sample testing using the CTX-M-1/15 LEC-LAMP assay in combination with a rapid DNA extraction protocol was carried out on porcine fecal samples previously confirmed to be PCR-positive for E. coli blaCTX-M. Portable instrumentation was used to further analyze each fecal sample and demonstrate the on-site testing capabilities of the LEC-LAMP assay with the rapid DNA extraction protocol. The CTX-M-1/15 LEC-LAMP assay demonstrated complete analytical specificity for the differential detection of both variants with sensitive low-level detection of 8.5 and 9.8 copies per reaction for blaCTX-M-1 and blaCTX-M-15, respectively, and E. coli blaCTX-M-1 was identified in all blaCTX-M positive porcine fecal samples tested.This research was funded by the European Union Horizon 2020 Research and Innovation Program under grant agreement No. 773830: One Health European Joint Program, JRP13-AMRSH5-WORLDCOM project.info:eu-repo/semantics/publishedVersio

    A one health framework to estimate the cost of antimicrobial resistance

    Get PDF
    Abstract Objectives/purpose The costs attributable to antimicrobial resistance (AMR) remain theoretical and largely unspecified. Current figures fail to capture the full health and economic burden caused by AMR across human, animal, and environmental health; historically many studies have considered only direct costs associated with human infection from a hospital perspective, primarily from high-income countries. The Global Antimicrobial Resistance Platform for ONE-Burden Estimates (GAP-ON€) network has developed a framework to help guide AMR costing exercises in any part of the world as a first step towards more comprehensive analyses for comparing AMR interventions at the local level as well as more harmonized analyses for quantifying the full economic burden attributable to AMR at the global level. Methods GAP-ON€ (funded under the JPIAMR 8th call (Virtual Research Institute) is composed of 19 international networks and institutions active in the field of AMR. For this project, the Network operated by means of Delphi rounds, teleconferences and face-to-face meetings. The resulting costing framework takes a bottom-up approach to incorporate all relevant costs imposed by an AMR bacterial microbe in a patient, in an animal, or in the environment up through to the societal level. Results The framework itemizes the epidemiological data as well as the direct and indirect cost components needed to build a realistic cost picture for AMR. While the framework lists a large number of relevant pathogens for which this framework could be used to explore the costs, the framework is sufficiently generic to facilitate the costing of other resistant pathogens, including those of other aetiologies. Conclusion In order to conduct cost-effectiveness analyses to choose amongst different AMR-related interventions at local level, the costing of AMR should be done according to local epidemiological priorities and local health service norms. Yet the use of a common framework across settings allows for the results of such studies to contribute to cumulative estimates that can serve as the basis of broader policy decisions at the international level such as how to steer R&D funding and how to prioritize AMR amongst other issues. Indeed, it is only by building a realistic cost picture that we can make informed decisions on how best to tackle major health threats

    Large-Scale Screening of a Targeted Enterococcus faecalis Mutant Library Identifies Envelope Fitness Factors

    Get PDF
    Spread of antibiotic resistance among bacteria responsible for nosocomial and community-acquired infections urges for novel therapeutic or prophylactic targets and for innovative pathogen-specific antibacterial compounds. Major challenges are posed by opportunistic pathogens belonging to the low GC% Gram-positive bacteria. Among those, Enterococcus faecalis is a leading cause of hospital-acquired infections associated with life-threatening issues and increased hospital costs. To better understand the molecular properties of enterococci that may be required for virulence, and that may explain the emergence of these bacteria in nosocomial infections, we performed the first large-scale functional analysis of E. faecalis V583, the first vancomycin-resistant isolate from a human bloodstream infection. E. faecalis V583 is within the high-risk clonal complex 2 group, which comprises mostly isolates derived from hospital infections worldwide. We conducted broad-range screenings of candidate genes likely involved in host adaptation (e.g., colonization and/or virulence). For this purpose, a library was constructed of targeted insertion mutations in 177 genes encoding putative surface or stress-response factors. Individual mutants were subsequently tested for their i) resistance to oxidative stress, ii) antibiotic resistance, iii) resistance to opsonophagocytosis, iv) adherence to the human colon carcinoma Caco-2 epithelial cells and v) virulence in a surrogate insect model. Our results identified a number of factors that are involved in the interaction between enterococci and their host environments. Their predicted functions highlight the importance of cell envelope glycopolymers in E. faecalis host adaptation. This study provides a valuable genetic database for understanding the steps leading E. faecalis to opportunistic virulence

    Microbial food safety in Ghana: a meta-analysis

    No full text

    Indigenous and acquired modifications in the aminoglycoside binding sites of Pseudomonas aeruginosa rRNAs

    No full text
    Aminoglycoside antibiotics remain the drugs of choice for treatment of Pseudomonas aeruginosa infections, particularly for respiratory complications in cystic-fibrosis patients. Previous studies on other bacteria have shown that aminoglycosides have their primary target within the decoding region of 16S rRNA helix 44 with a secondary target in 23S rRNA helix 69. Here, we have mapped P. aeruginosa rRNAs using MALDI mass spectrometry and reverse transcriptase primer extension to identify nucleotide modifications that could influence aminoglycoside interactions. Helices 44 and 45 contain indigenous (housekeeping) modifications at m(4)Cm1402, m(3)U1498, m(2)G1516, m(6)(2)A1518, and m(6)(2)A1519; helix 69 is modified at m(3)Ψ1915, with m(5)U1939 and m(5)C1962 modification in adjacent sequences. All modifications were close to stoichiometric, with the exception of m(3)Ψ1915, where about 80% of rRNA molecules were methylated. The modification status of a virulent clinical strain expressing the acquired methyltransferase RmtD was altered in two important respects: RmtD stoichiometrically modified m(7)G1405 conferring high resistance to the aminoglycoside tobramycin and, in doing so, impeded one of the methylation reactions at C1402. Mapping the nucleotide methylations in P. aeruginosa rRNAs is an essential step toward understanding the architecture of the aminoglycoside binding sites and the rational design of improved drugs against this bacterial pathogen

    Evolution of ColE1-like plasmids across γ-Proteobacteria: From bacteriocin production to antimicrobial resistance

    No full text
    International audienceAntimicrobial resistance is one of the major threats to Public Health worldwide. Understanding the transfer and maintenance of antimicrobial resistance genes mediated by mobile genetic elements is thus urgent. In this work, we focus on the ColE1-like plasmid family, whose distinctive replication and multicopy nature has given rise to key discoveries and tools in molecular biology. Despite being massively used, the hosts, functions, and evolutionary history of these plasmids remain poorly known. Here, we built specific Hidden Markov Model (HMM) profiles to search ColE1 replicons within genomes. We identified 1,035 ColE1 plasmids in five Orders of γ-Proteobacteria, several of which are described here for the first time. The phylogenetic analysis of these replicons and their characteristic MOB P5/HEN relaxases suggest that ColE1 plasmids have diverged apart, with little transfer across orders, but frequent transfer across families. Additionally, ColE1 plasmids show a functional shift over the last decades, losing their characteristic bacteriocin production while gaining several antimicrobial resistance genes, mainly enzymatic determinants and including several extended-spectrum betalactamases and carbapenemases. Furthermore, ColE1 plasmids facilitate the intragenomic mobilization of these determinants, as various replicons were identified co-integrated with large non-ColE1 plasmids, mostly via transposases. These results illustrate how families of plasmids evolve and adapt their gene repertoires to bacterial adaptive requirements
    corecore