25 research outputs found

    Pipeline quantum processor architecture for silicon spin qubits

    Get PDF
    We propose a quantum processor architecture, the qubit ‘pipeline’, in which run-time scales additively as functions of circuit depth and run repetitions. Run-time control is applied globally, reducing the complexity of control and interconnect resources. This simplification is achieved by shuttling N-qubit states through a large layered physical array of structures which realise quantum logic gates in stages. Thus, the circuit depth corresponds to the number of layers of structures. Subsequent N-qubit states are ‘pipelined’ densely through the structures to efficiently wield the physical resources for repeated runs. Pipelining thus lends itself to noisy intermediate-scale quantum (NISQ) applications, such as variational quantum eigensolvers, which require numerous repetitions of the same or similar calculations. We illustrate the architecture by describing a realisation in the naturally high-density and scalable silicon spin qubit platform, which includes a universal gate set of sufficient fidelity under realistic assumptions of qubit variability

    Pipeline quantum processor architecture for silicon spin qubits

    Get PDF
    We propose a quantum processor architecture, the qubit ‘pipeline’, in which run-time scales additively as functions of circuit depth and run repetitions. Run-time control is applied globally, reducing the complexity of control and interconnect resources. This simplification is achieved by shuttling N-qubit states through a large layered physical array of structures which realise quantum logic gates in stages. Thus, the circuit depth corresponds to the number of layers of structures. Subsequent N-qubit states are ‘pipelined’ densely through the structures to efficiently wield the physical resources for repeated runs. Pipelining thus lends itself to noisy intermediate-scale quantum (NISQ) applications, such as variational quantum eigensolvers, which require numerous repetitions of the same or similar calculations. We illustrate the architecture by describing a realisation in the naturally high-density and scalable silicon spin qubit platform, which includes a universal gate set of sufficient fidelity under realistic assumptions of qubit variability

    Primary thermometry of a single reservoir using cyclic electron tunneling to a quantum dot

    Get PDF
    At the nanoscale, local and accurate measurements of temperature are of particular relevance when testing quantum thermodynamical concepts or investigating novel thermal nanoelectronic devices. Here, we present a primary electron thermometer that allows probing the local temperature of a single-electron reservoir in single-electron devices. The thermometer is based on cyclic electron tunneling between a system with discrete energy levels and the reservoir. When driven at a finite rate, close to a charge degeneracy point, the system behaves like a variable capacitor whose full width at half maximum depends linearly with temperature. We demonstrate this type of thermometer using a quantum dot in a silicon nanowire transistor. We drive cyclic electron tunneling by embedding the device in a radio-frequency resonator which in turn allows reading the thermometer dispersively. Overall, the thermometer shows potential for local probing of fast heat dynamics in nanoelectronic devices and for seamless integration with silicon-based quantum circuits

    Spin readout of a CMOS quantum dot by gate reflectometry and spin-dependent tunnelling

    Get PDF
    Silicon spin qubits are promising candidates for realising large scale quantum processors, benefitting from a magnetically quiet host material and the prospects of leveraging the mature silicon device fabrication industry. We report the measurement of an electron spin in a singly-occupied gate-defined quantum dot, fabricated using CMOS compatible processes at the 300 mm wafer scale. For readout, we employ spin-dependent tunneling combined with a low-footprint single-lead quantum dot charge sensor, measured using radiofrequency gate reflectometry. We demonstrate spin readout in two devices using this technique, obtaining valley splittings in the range 0.5-0.7 meV using excited state spectroscopy, and measure a maximum electron spin relaxation time (T1T_1) of 9±39 \pm 3 s at 1 Tesla. These long lifetimes indicate the silicon nanowire geometry and fabrication processes employed here show a great deal of promise for qubit devices, while the spin-readout method demonstrated here is well-suited to a variety of scalable architectures

    Fast Gate-Based Readout of Silicon Quantum Dots Using Josephson Parametric Amplification

    Get PDF
    Spins in silicon quantum devices are promising candidates for large-scale quantum computing. Gate-based sensing of spin qubits offers a compact and scalable readout with high fidelity, however, further improvements in sensitivity are required to meet the fidelity thresholds and measurement timescales needed for the implementation of fast feedback in error correction protocols. Here, we combine radio-frequency gate-based sensing at 622 MHz with a Josephson parametric amplifier, that operates in the 500–800 MHz band, to reduce the integration time required to read the state of a silicon double quantum dot formed in a nanowire transistor. Based on our achieved signal-to-noise ratio, we estimate that singlet-triplet single-shot readout with an average fidelity of 99.7% could be performed in 1     μ s , well below the requirements for fault-tolerant readout and 30 times faster than without the Josephson parametric amplifier. Additionally, the Josephson parametric amplifier allows operation at a lower radio-frequency power while maintaining identical signal-to-noise ratio. We determine a noise temperature of 200 mK with a contribution from the Josephson parametric amplifier (25%), cryogenic amplifier (25%) and the resonator (50%), showing routes to further increase the readout speed

    Radio frequency measurements of tunnel couplings and singlet–triplet spin states in Si:P quantum dots

    Get PDF
    Spin states of the electrons and nuclei of phosphorus donors in silicon are strong candidates for quantum information processing applications given their excellent coherence times. Designing a scalable donor-based quantum computer will require both knowledge of the relationship between device geometry and electron tunnel couplings, and a spin readout strategy that uses minimal physical space in the device. Here we use radio frequency reflectometry to measure singlet–triplet states of a few-donor Si:P double quantum dot and demonstrate that the exchange energy can be tuned by at least two orders of magnitude, from 20 μeV to 8 meV. We measure dot–lead tunnel rates by analysis of the reflected signal and show that they change from 100 MHz to 22 GHz as the number of electrons on a quantum dot is increased from 1 to 4. These techniques present an approach for characterizing, operating and engineering scalable qubit devices based on donors in silicon

    Engineering the Photoresponse of InAs Nanowires

    No full text
    We report on individual-InAs nanowire optoelectronic devices which can be tailored to exhibit either negative or positive photoconductivity (NPC or PPC). The NPC photoresponse time and magnitude is found to be highly tunable by varying the nanowire diameter under controlled growth conditions. Using hysteresis characterization, we decouple the observed photoexcitation-induced hot electron trapping from conventional electric field-induced trapping to gain a fundamental insight into the interface trap states responsible for NPC. Furthermore, we demonstrate surface passivation without chemical etching which both enhances the field-effect mobility of the nanowires by approximately an order of magnitude and effectively eliminates the hot carrier trapping found to be responsible for NPC, thus restoring an "intrinsic" positive photoresponse. This opens pathways toward engineering semiconductor nanowires for novel optical-memory and photodetector applications
    corecore