10 research outputs found

    What remains of the future: sustainability through heritage

    Get PDF
    Coordinators : Felipe Criado Boado (INCIPIT, CSIC), Blanca Ramírez Barat (CENIM, CSIC).Heritage is increasingly being recognized as a key element for social cohesion, sustainable socioeconomic development and people’s welfare. Resources dedicated to heritage conservation have gone from being considered an expense to being regarded as an investment, with a high revenue. The heritage industry has been an active part of this transformations in recent decades, it has generated employment, contributed to the worldwide expansion of tourism and has become a coveted sign of identity for political communities. Today there is no social or political process that does not use heritage in some way. Hence the actuality of the subject, and the importance of an organization such as the CSIC having research capabilities in this field

    Specific NOTCH1 antibody targets DLL4-induced proliferation, migration, and angiogenesis in NOTCH1-mutated CLL cells

    Get PDF
    Targeting Notch signaling has emerged as a promising therapeutic strategy for chronic lymphocytic leukemia (CLL), particularly in NOTCH1-mutated patients. We provide first evidence that the Notch ligand DLL4 is a potent stimulator of Notch signaling in NOTCH1-mutated CLL cells while increases cell proliferation. Importantly, DLL4 is expressed in histiocytes from the lymph node, both in NOTCH1-mutated and -unmutated cases. We also show that the DLL4-induced activation of the Notch signaling pathway can be efficiently blocked with the specific anti-Notch1 antibody OMP-52M51. Accordingly, OMP-52M51 also reverses Notch-induced MYC, CCND1, and NPM1 gene expression as well as cell proliferation in NOTCH1-mutated CLL cells. In addition, DLL4 stimulation triggers the expression of protumor target genes, such as CXCR4, NRARP, and VEGFA, together with an increase in cell migration and angiogenesis. All these events can be antagonized by OMP-52M51. Collectively, our results emphasize the role of DLL4 stimulation in NOTCH1-mutated CLL and confirm the specific therapeutic targeting of Notch1 as a promising approach for this group of poor prognosis CLL patients

    A unifying hypothesis for PNMZL and PTFL: morphological variants with a common molecular profile

    Full text link
    Pediatric nodal marginal zone lymphoma (PNMZL) is an uncommon B-cell neoplasm affecting mainly male children and young adults. This indolent lymphoma has distinct characteristics that differ from those of conventional nodal marginal zone lymphoma (NMZL). Clinically, it exhibits overlapping features with pediatric-type follicular lymphoma (PTFL). To explore the differences between PNMZL and adult NMZL and its relationship to PTFL, a series of 45 PNMZL cases were characterized morphologically and genetically by using an integrated approach; this approach included whole-exome sequencing in a subset of cases, targeted next-generation sequencing, and copy number and DNA methylation arrays. Fourteen cases (31%) were diagnosed as PNMZL, and 31 cases (69%) showed overlapping histologic features between PNMZL and PTFL, including a minor component of residual serpiginous germinal centers reminiscent of PTFL and a dominant interfollicular B-cell component characteristic of PNMZL. All cases displayed low genomic complexity (1.2 alterations per case) with recurrent 1p36/TNFRSF14 copy number-neutral loss of heterozygosity alterations and copy number loss (11%). Similar to PTFL, the most frequently mutated genes in PNMZL were MAP2K1 (42%), TNFRSF14 (36%), and IRF8 (34%). DNA methylation analysis revealed no major differences between PTFL and PNMZL. Genetic alterations typically seen in conventional NMZL were absent in PNMZL. In summary, overlapping clinical, morphologic, and molecular findings (including low genetic complexity; recurrent alterations in MAP2K1, TNFRSF14, and IRF8; and similar methylation profiles) indicate that PNMZL and PTFL are likely part of a single disease with variation in the histologic spectrum. The term "pediatric-type follicular lymphoma with and without marginal zone differentiation" is suggested.Licensed under Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0), permitting only noncommercial, nonderivative use with attribution. All other rights reserved

    Alteraciones del olfato en la COVID-19, revisión de la evidencia e implicaciones en el manejo de la pandèmia

    No full text
    Existe debate sobre si las alteraciones en el olfato deberían considerarse un síntoma de la COVID-19. Se realizó una revisión sistemática bibliográfica de los artículos indexados en PubMed sobre alteraciones del olfato en cuadros virales de vías respiratorias, con especial énfasis en la COVID-19. El objetivo principal fue encontrar evidencia de interés clínico que apoye la relación entre ansomia y COVID-19. Las alteraciones del olfato en procesos infecciosos de vías altas son frecuentes y en su mayoría responden a una causa obstructiva por edema de la mucosa nasal. Ocasionalmente aparece una disfunción olfatoria posviral de tipo neurosensorial, de pronóstico variable. La evidencia acerca de la anosmia en pacientes con COVID-19 es muy limitada, correspondiente a un grado 5 o D del Centre for Evidence-Based Medicine. De acuerdo con la evidencia disponible, parece razonable aplicar medidas de aislamiento, higiene y distanciamiento social a los pacientes con alteraciones del olfato de reciente aparición como único síntoma, aunque se debería estudiar la utilidad de la realización de pruebas diagnósticas a este tipo de sujetos

    Placental oxygen transfer reduces hypoxia-reoxygenation swings in fetal blood in a sheep model of gestational sleep apnea

    No full text
    Obstructive sleep apnea (OSA), characterized by events of hypoxia-reoxygenation, is highly prevalent in pregnancy, negatively affecting the gestation process and particularly the fetus. Whether the consequences of OSA for the fetus and offspring are mainly caused by systemic alterations in the mother or by a direct effect of intermittent hypoxia in the fetus is unknown. In fact, how apnea-induced hypoxemic swings in OSA are transmitted across the placenta remains to be investigated. The aim of this study was to test the hypothesis, based on a theoretical background on the damping effect of oxygen transfer in the placenta, that oxygen partial pressure (Po2) swings resulting from obstructive apneas mimicking OSA are mitigated in the fetal circulation. To this end, four anesthetized ewes close to term pregnancy were subjected to obstructive apneas consisting of 25-s airway obstructions. Real-time Po2 was measured in the maternal carotid artery and in the umbilical vein with fast-response fiber-optic oxygen sensors. The amplitudes of Po2 swings in the umbilical vein were considerably smaller [3.1 ± 1.0 vs. 21.0 ± 6.1 mmHg (mean ± SE); P < 0.05]. Corresponding estimated swings in fetal and maternal oxyhemoglobin saturation tracked Po2 swings. This study provides novel insights into fetal oxygenation in a model of gestational OSA and highlights the importance of further understanding the impact of sleep-disordered breathing on fetal and offspring development.NEW & NOTEWORTHY This study in an airway obstruction sheep model of gestational sleep apnea provides novel data on how swings in oxygen partial pressure (Po2) translate from maternal to fetal blood. Real-time simultaneous measurement of Po2 in maternal artery and in umbilical vein shows that placenta transfer attenuates the magnitude of oxygenation swings. These data prompt further investigation of the extent to which maternal apneas could induce similar direct oxidative stress in fetal and maternal tissues.This work was supported in part by the Spanish Ministry of Science, Innovation and Universities (SAF2017-85574-R)

    IKKα kinase regulates the DNA damage response and drives chemo-resistance in cancer

    No full text
    Phosphorylated IKKalpha(p45) is a nuclear active form of the IKKalpha kinase that is induced by the MAP kinases BRAF and TAK1 and promotes tumor growth independent of canonical NF-¿B signaling. Insights into the sources of IKKalpha(p45) activation and its downstream substrates in the nucleus remain to be defined. Here, we discover that IKKalpha(p45) is rapidly activated by DNA damage independent of ATM-ATR, but dependent on BRAF-TAK1-p38-MAPK, and is required for robust ATM activation and efficient DNA repair. Abolishing BRAF or IKKalpha activity attenuates ATM, Chk1, MDC1, Kap1, and 53BP1 phosphorylation, compromises 53BP1 and RIF1 co-recruitment to sites of DNA lesions, and inhibits 53BP1-dependent fusion of dysfunctional telomeres. Furthermore, IKKalpha or BRAF inhibition synergistically enhances the therapeutic potential of 5-FU and irinotecan to eradicate chemotherapy-resistant metastatic human tumors in vivo. Our results implicate BRAF and IKKalpha kinases in the DDR and reveal a combination strategy for cancer treatment.This work was funded by grants from Instituto de Salud Carlos III FEDER (PIE15/00008 and PI16/00437), Generalitat de Catalunya 2017SGR135, and the “Xarxa de Bancs de Tumors” sponsored by Pla Director d’Oncologia de Catalunya (XBTC). C.C. is supported by FPI BES-2014-068451 and the EMBO Short-Term Fellowship (na7084). P.M. is supported by funding from the European Union’s Horizon 2020 research and innovation program under the Marie Sklodowska-Curie grant agreement #702430. The Boulton lab is supported by The Francis Crick Institute, which receives its core funding from Cancer Research UK (FC0010048), the UK Medical Research Council (FC0010048), and the Wellcome Trust (FC0010048). S.J.B. is funded by European Research Council (ERC) Advanced Investigator Grants (TelMetab) and a Wellcome Trust Senior Investigator Grant. The Centre de Regulació Genòmica/Universitat Pompeu Fabra Proteomics Unit is part of the “Plataforma de Recursos Biomoleculares y Bioinformáticos (ProteoRed)” supported by grant PT13/0001 of Instituto de Salud Carlos III from the Spanish government and “Secretaria d’Universitats i Recerca del Departament d’Economia i Coneixement de la Generalitat de Catalunya” (2014SGR678). We acknowledge support from the Spanish Ministry of Economy and Competitiveness and “Centro de Excelencia Severo Ochoa 2013-2017” (SEV-2012-0208)

    IKKα kinase regulates the DNA damage response and drives chemo-resistance in cancer

    No full text
    Phosphorylated IKKalpha(p45) is a nuclear active form of the IKKalpha kinase that is induced by the MAP kinases BRAF and TAK1 and promotes tumor growth independent of canonical NF-¿B signaling. Insights into the sources of IKKalpha(p45) activation and its downstream substrates in the nucleus remain to be defined. Here, we discover that IKKalpha(p45) is rapidly activated by DNA damage independent of ATM-ATR, but dependent on BRAF-TAK1-p38-MAPK, and is required for robust ATM activation and efficient DNA repair. Abolishing BRAF or IKKalpha activity attenuates ATM, Chk1, MDC1, Kap1, and 53BP1 phosphorylation, compromises 53BP1 and RIF1 co-recruitment to sites of DNA lesions, and inhibits 53BP1-dependent fusion of dysfunctional telomeres. Furthermore, IKKalpha or BRAF inhibition synergistically enhances the therapeutic potential of 5-FU and irinotecan to eradicate chemotherapy-resistant metastatic human tumors in vivo. Our results implicate BRAF and IKKalpha kinases in the DDR and reveal a combination strategy for cancer treatment.This work was funded by grants from Instituto de Salud Carlos III FEDER (PIE15/00008 and PI16/00437), Generalitat de Catalunya 2017SGR135, and the “Xarxa de Bancs de Tumors” sponsored by Pla Director d’Oncologia de Catalunya (XBTC). C.C. is supported by FPI BES-2014-068451 and the EMBO Short-Term Fellowship (na7084). P.M. is supported by funding from the European Union’s Horizon 2020 research and innovation program under the Marie Sklodowska-Curie grant agreement #702430. The Boulton lab is supported by The Francis Crick Institute, which receives its core funding from Cancer Research UK (FC0010048), the UK Medical Research Council (FC0010048), and the Wellcome Trust (FC0010048). S.J.B. is funded by European Research Council (ERC) Advanced Investigator Grants (TelMetab) and a Wellcome Trust Senior Investigator Grant. The Centre de Regulació Genòmica/Universitat Pompeu Fabra Proteomics Unit is part of the “Plataforma de Recursos Biomoleculares y Bioinformáticos (ProteoRed)” supported by grant PT13/0001 of Instituto de Salud Carlos III from the Spanish government and “Secretaria d’Universitats i Recerca del Departament d’Economia i Coneixement de la Generalitat de Catalunya” (2014SGR678). We acknowledge support from the Spanish Ministry of Economy and Competitiveness and “Centro de Excelencia Severo Ochoa 2013-2017” (SEV-2012-0208)

    What remains of the future: sustainability through heritage

    Get PDF
    Heritage is increasingly being recognized as a key element for social cohesion, sustainable socioeconomic development and people’s welfare. Resources dedicated to heritage conservation have gone from being considered an expense to being regarded as an investment, with a high revenue. The heritage industry has been an active part of this transformations in recent decades, it has generated employment, contributed to the worldwide expansion of tourism and has become a coveted sign of identity for political communities. Today there is no social or political process that does not use heritage in some way. Hence the actuality of the subject, and the importance of an organization such as the CSIC having research capabilities in this field
    corecore