64 research outputs found

    Power laws of natural swarms are fingerprints of an extended critical region

    Full text link
    Collective biological systems display power laws for macroscopic quantities and are fertile probing grounds for statistical physics. Besides power laws, natural insect swarms present strong scale-free correlations, suggesting closeness to phase transitions. Swarms exhibit imperfectimperfect dynamic scaling: their dynamical correlation functions collapse into single curves when written as functions of the scaled time tξzt\xi^{-z} (ξ\xi: correlation length, zz: dynamic exponent), but only for short times. Triggered by markers, natural swarms are not invariant under space translations. Measured static and dynamic critical exponents differ from those of equilibrium and many nonequilibrium phase transitions. Here, we show that the recently discovered scale-free-chaos phase transition of the harmonically confined Vicsek model has a novel extended critical region for finitely many insects. Unlike results of other theoretical approaches, our numerical simulations of the critical region reproduce the previously described features of natural swarms and yield static and dynamic critical exponents that agree with observations.Comment: 6 pages, 4 figures in the main text, 5 pages, 8 figures in supplementary materia

    Mean field theory of chaotic insect swarms

    Get PDF
    The harmonically confined Vicsek model displays qualitative and quantitative features observed in natural insect swarms. It exhibits a scale-free transition between single and multicluster chaotic phases. Finite-size scaling indicates that this unusual phase transition occurs at zero confinement [Phys. Rev. E 107, 014209 (2023)]. While the evidence of the scale-free-chaos phase transition comes from numerical simulations, here we present its mean-field theory. Analytically determined critical exponents are those of the Landau theory of equilibrium phase transitions plus dynamical critical exponent z = 1 and a new critical exponent φ = 0.5 for the largest Lyapunov exponent. The phase transition occurs at zero confinement and noise in the mean-field theory. The noise line of zero largest Lyapunov exponents informs observed behavior: (i) the qualitative shape of the swarm (on average, the center of mass rotates slowly at the rate marked by the winding number and its trajectory fills compactly the space, similarly to the observed condensed nucleus surrounded by vapor) and (ii) the critical exponents resemble those observed in natural swarms. Our predictions include power laws for the frequency of the maximal spectral amplitude and the winding number.This work has been supported by the FEDER/Ministerio de Ciencia, Innovación y Universidades-Agencia Estatal de Investigación Grants No. PID2020-112796RB-C21 ( R.G.-A.) and No. PID2020-112796RB-C22 (L.L.B.), by the Madrid Government (Comunidad de Madrid-Spain) under the Multiannual Agreement with UC3M in the line of Excellence of University Professors (EPUC3M23), and in the context of the V PRICIT (Regional Programme of Research and Technological Innovation). R.G.-A. acknowledges support from the Ministerio de Economía y Competitividad of Spain through the Formación de Doctores program Grant No. PRE2018-083807 cofinanced by the European Social Fund

    Scale free chaos in the confined Vicsek flocking model

    Get PDF
    The Vicsek model encompasses the paradigm of active dry matter. Motivated by collective behavior of insects in swarms, we have studied finite size effects and criticality in the three dimensional, harmonically confined Vicsek model. We have discovered a phase transition that exists for appropriate noise and small confinement strength. On the critical line of confinement versus noise, swarms are in a state of scale-free chaos characterized by minimal correlation time, correlation length proportional to swarm size and topological data analysis. The critical line separates dispersed single clusters from confined multicluster swarms. Scale-free chaotic swarms occupy a compact region of space and comprise a recognizable `condensed' nucleus and particles leaving and entering it. Susceptibility, correlation length, dynamic correlation function and largest Lyapunov exponent obey power laws. The critical line and a narrow criticality region close to it move simultaneously to zero confinement strength for infinitely many particles. At the end of the first chaotic window of confinement, there is another phase transition to infinitely dense clusters of finite size that may be termed flocking black holes.Comment: 24 pages, 26 figures, revte

    Effect of ultrashort laser microstructuring of enamel and dentin surfaces on bond strengths in orthodontics and conservative dentistry.

    Get PDF
    [EN]The improvement of adhesion properties in orthodontics and conservative dentistry still remains an open issue. In this work, dentin and enamel surfaces have been totally conditioned by means of ultrashort pulsed laser microstructuring (wavelength: 795 nm, pulse duration: 120 fs, repetition rate: 1 kHz, maximum mean power: 1 W) in order to assess the procedure as an alternative to conventional techniques (acid etching and Er:YAG processing) for clinical practice. Molar dentin surfaces and premolar specimens were used for the study. Adhesive bond strengths were evaluated by means of microtensile bond strength (μ TBS) and shear bond strength (SBS) tests of a total etch adhesive system to microstructured dentin and enamel, respectively. The results were related to scanning electron microscope (SEM) observations of the processed and failure surfaces. Bonding strengths were found to be comparable to other conditioning techniques and sometimes even higher. This makes femtosecond laser conditioning of dental tissues a suitable procedure for clinical practice of orthodontics and conservative dentistry

    Extended discrete dipole approximation and its application to bianisotropic media

    Get PDF
    In this research we introduce the formalism of the extension of the discrete dipole approximation to a more general range of tensorial relative permittivity and permeability. Its performance is tested in the domain of applicability of other methods for the case of composite materials (nanoshells). Then, some early results on bianisotropic nanoparticles are presented, to show the potential of the Extended Discrete Dipole Approximation (E-DDA) as a new tool for calculating the interaction of light with bianisotropic scatterers

    Relationship of Weather Types on the Seasonal and Spatial Variability of Rainfall, Runoff, and Sediment Yield in the Western Mediterranean Basin

    Get PDF
    Rainfall is the key factor to understand soil erosion processes, mechanisms, and rates. Most research was conducted to determine rainfall characteristics and their relationship with soil erosion (erosivity) but there is little information about how atmospheric patterns control soil losses, and this is important to enable sustainable environmental planning and risk prevention. We investigated the temporal and spatial variability of the relationships of rainfall, runoff, and sediment yield with atmospheric patterns (weather types, WTs) in the western Mediterranean basin. For this purpose, we analyzed a large database of rainfall events collected between 1985 and 2015 in 46 experimental plots and catchments with the aim to: (i) evaluate seasonal differences in the contribution of rainfall, runoff, and sediment yield produced by the WTs; and (ii) to analyze the seasonal efficiency of the different WTs (relation frequency and magnitude) related to rainfall, runoff, and sediment yield. The results indicate two different temporal patterns: the first weather type exhibits (during the cold period: autumn and winter) westerly flows that produce the highest rainfall, runoff, and sediment yield values throughout the territory; the second weather type exhibits easterly flows that predominate during the warm period (spring and summer) and it is located on the Mediterranean coast of the Iberian Peninsula. However, the cyclonic situations present high frequency throughout the whole year with a large influence extended around the western Mediterranean basin. Contrary, the anticyclonic situations, despite of its high frequency, do not contribute significantly to the total rainfall, runoff, and sediment (showing the lowest efficiency) because of atmospheric stability that currently characterize this atmospheric pattern. Our approach helps to better understand the relationship of WTs on the seasonal and spatial variability of rainfall, runoff and sediment yield with a regional scale based on the large dataset and number of soil erosion experimental stations.Spanish Government (Ministry of Economy and Competitiveness, MINECO) and FEDER Projects: CGL2014 52135-C3-3-R, ESP2017-89463-C3-3-R, CGL2014-59946-R, CGL2015-65569-R, CGL2015-64284-C2-2-R, CGL2015-64284-C2-1-R, CGL2016-78075-P, GL2008-02879/BTE, LEDDRA 243857, RECARE-FP7, CGL2017-83866-C3-1-R, and PCIN-2017-061/AEI. Dhais Peña-Angulo received a “Juan de la Cierva” postdoctoral contract (FJCI-2017-33652 Spanish Ministry of Economy and Competitiveness, MEC). Ana Lucia acknowledge the "Brigitte-Schlieben-Lange-Programm". The “Geoenvironmental Processes and Global Change” (E02_17R) was financed by the Aragón Government and the European Social Fund. José Andrés López-Tarazón acknowledges the Secretariat for Universities and Research of the Department of the Economy and Knowledge of the Autonomous Government of Catalonia for supporting the Consolidated Research Group 2014 SGR 645 (RIUS- Fluvial Dynamics Research Group). Artemi Cerdà thank the funding of the OCDE TAD/CRP JA00088807. José Martínez-Fernandez acknowledges the project Unidad de Excelencia CLU-2018-04 co-funded by FEDER and Castilla y León Government. Ane Zabaleta is supported by the Hydro-Environmental Processes consolidated research group (IT1029-16, Basque Government). This paper has the benefit of the Lab and Field Data Pool created within the framework of the COST action CONNECTEUR (ES1306)

    Effectiveness of an mHealth intervention combining a smartphone app and smart band on body composition in an overweight and obese population: Randomized controlled trial (EVIDENT 3 study)

    Get PDF
    Background: Mobile health (mHealth) is currently among the supporting elements that may contribute to an improvement in health markers by helping people adopt healthier lifestyles. mHealth interventions have been widely reported to achieve greater weight loss than other approaches, but their effect on body composition remains unclear. Objective: This study aimed to assess the short-term (3 months) effectiveness of a mobile app and a smart band for losing weight and changing body composition in sedentary Spanish adults who are overweight or obese. Methods: A randomized controlled, multicenter clinical trial was conducted involving the participation of 440 subjects from primary care centers, with 231 subjects in the intervention group (IG; counselling with smartphone app and smart band) and 209 in the control group (CG; counselling only). Both groups were counselled about healthy diet and physical activity. For the 3-month intervention period, the IG was trained to use a smartphone app that involved self-monitoring and tailored feedback, as well as a smart band that recorded daily physical activity (Mi Band 2, Xiaomi). Body composition was measured using the InBody 230 bioimpedance device (InBody Co., Ltd), and physical activity was measured using the International Physical Activity Questionnaire. Results: The mHealth intervention produced a greater loss of body weight (–1.97 kg, 95% CI –2.39 to –1.54) relative to standard counselling at 3 months (–1.13 kg, 95% CI –1.56 to –0.69). Comparing groups, the IG achieved a weight loss of 0.84 kg more than the CG at 3 months. The IG showed a decrease in body fat mass (BFM; –1.84 kg, 95% CI –2.48 to –1.20), percentage of body fat (PBF; –1.22%, 95% CI –1.82% to 0.62%), and BMI (–0.77 kg/m2, 95% CI –0.96 to 0.57). No significant changes were observed in any of these parameters in men; among women, there was a significant decrease in BMI in the IG compared with the CG. When subjects were grouped according to baseline BMI, the overweight group experienced a change in BFM of –1.18 kg (95% CI –2.30 to –0.06) and BMI of –0.47 kg/m2 (95% CI –0.80 to –0.13), whereas the obese group only experienced a change in BMI of –0.53 kg/m2 (95% CI –0.86 to –0.19). When the data were analyzed according to physical activity, the moderate-vigorous physical activity group showed significant changes in BFM of –1.03 kg (95% CI –1.74 to –0.33), PBF of –0.76% (95% CI –1.32% to –0.20%), and BMI of –0.5 kg/m2 (95% CI –0.83 to –0.19). Conclusions: The results from this multicenter, randomized controlled clinical trial study show that compared with standard counselling alone, adding a self-reported app and a smart band obtained beneficial results in terms of weight loss and a reduction in BFM and PBF in female subjects with a BMI less than 30 kg/m2 and a moderate-vigorous physical activity level. Nevertheless, further studies are needed to ensure that this profile benefits more than others from this intervention and to investigate modifications of this intervention to achieve a global effect

    A922 Sequential measurement of 1 hour creatinine clearance (1-CRCL) in critically ill patients at risk of acute kidney injury (AKI)

    Get PDF
    Meeting abstrac

    Relationship of Weather Types on the Seasonal and Spatial Variability of Rainfall, Runoff, and Sediment Yield in the Western Mediterranean Basin

    Get PDF
    Rainfall is the key factor to understand soil erosion processes, mechanisms, and rates. Most research was conducted to determine rainfall characteristics and their relationship with soil erosion (erosivity) but there is little information about how atmospheric patterns control soil losses, and this is important to enable sustainable environmental planning and risk prevention. We investigated the temporal and spatial variability of the relationships of rainfall, runoff, and sediment yield with atmospheric patterns (weather types, WTs) in the western Mediterranean basin. For this purpose, we analyzed a large database of rainfall events collected between 1985 and 2015 in 46 experimental plots and catchments with the aim to: (i) evaluate seasonal differences in the contribution of rainfall, runoff, and sediment yield produced by the WTs; and (ii) to analyze the seasonal efficiency of the different WTs (relation frequency and magnitude) related to rainfall, runoff, and sediment yield. The results indicate two different temporal patterns: the first weather type exhibits (during the cold period: autumn and winter) westerly flows that produce the highest rainfall, runoff, and sediment yield values throughout the territory; the second weather type exhibits easterly flows that predominate during the warm period (spring and summer) and it is located on the Mediterranean coast of the Iberian Peninsula. However, the cyclonic situations present high frequency throughout the whole year with a large influence extended around the western Mediterranean basin. Contrary, the anticyclonic situations, despite of its high frequency, do not contribute significantly to the total rainfall, runoff, and sediment (showing the lowest efficiency) because of atmospheric stability that currently characterize this atmospheric pattern. Our approach helps to better understand the relationship of WTs on the seasonal and spatial variability of rainfall, runoff and sediment yield with a regional scale based on the large dataset and number of soil erosion experimental stations
    corecore