89,557 research outputs found
Room temperature ferromagnetic-like behavior in Mn-implanted and post-annealed InAs layers deposited by Molecular Beam Epitaxy
We report on the magnetic and structural properties of Ar and Mn implanted
InAs epitaxial films grown on GaAs (100) by Molecular Beam Epitaxy (MBE) and
the effect of Rapid Thermal Annealing (RTA) for 30 seconds at 750C. Channeling
Particle Induced X- ray Emission (PIXE) experiments reveal that after Mn
implantation almost all Mn atoms are subsbtitutional in the In-site of the InAs
lattice, like in a diluted magnetic semiconductor (DMS). All of these samples
show diamagnetic behavior. But, after RTA treatment the Mn-InAs films exhibit
room-temperature magnetism. According to PIXE measurements the Mn atoms are no
longer substitutional. When the same set of experiments were performed with As
as implantation ion all of the layers present diamagnetism without exception.
This indicates that the appearance of room-temperature ferromagnetic-like
behavior in the Mn-InAs-RTA layer is not related to lattice disorder produce
during implantation, but to a Mn reaction produced after a short thermal
treatment. X-ray diffraction patterns (XRD) and Rutherford Back Scattering
(RBS) measurements evidence the segregation of an oxygen deficient-MnO2 phase
(nominally MnO1.94) in the Mn-InAs-RTA epitaxial layers which might be on the
origin of room temperature ferromagnetic-like response observed.Comment: 16 pages, 5 figures. Acepted in J. Appl. Phy
InAs/InP single quantum wire formation and emission at 1.5 microns
Isolated InAs/InP self-assembled quantum wires have been grown using in situ
accumulated stress measurements to adjust the optimal InAs thickness. Atomic
force microscopy imaging shows highly asymmetric nanostructures with average
length exceeding more than ten times their width. High resolution optical
investigation of as-grown samples reveals strong photoluminescence from
individual quantum wires at 1.5 microns. Additional sharp features are related
to monolayer fluctuations of the two dimensional InAs layer present during the
early stages of the quantum wire self-assembling process.Comment: 4 pages and 3 figures submitted to Applied Physics Letter
A software-hardware hybrid steering mechanism for clustered microarchitectures
Clustered microarchitectures provide a promising paradigm to solve or alleviate the problems of increasing microprocessor complexity and wire delays. High- performance out-of-order processors rely on hardware-only steering mechanisms to achieve balanced workload distribution among clusters. However, the additional steering logic results in a significant increase on complexity, which actually decreases the benefits of the clustered design. In this paper, we address this complexity issue and present a novel software-hardware hybrid steering mechanism for out-of-order processors. The proposed software- hardware cooperative scheme makes use of the concept of virtual clusters. Instructions are distributed to virtual clusters at compile time using static properties of the program such as data dependences. Then, at runtime, virtual clusters are mapped into physical clusters by considering workload information. Experiments using SPEC CPU2000 benchmarks show that our hybrid approach can achieve almost the same performance as a state-of-the-art hardware-only steering scheme, while requiring low hardware complexity. In addition, the proposed mechanism outperforms state-of-the-art software-only steering mechanisms by 5% and 10% on average for 2-cluster and 4-cluster machines, respectively.Peer ReviewedPostprint (published version
Quaternary glacial evolution in the Central Cantabrian Mountains (Northern Spain)
Peer reviewedPostprin
Kohn-Luttinger superconductivity in graphene
We investigate the development of superconductivity in graphene when the
Fermi level becomes close to one of the Van Hove singularities of the electron
system. The origin of the pairing instability lies in the strong anisotropy of
the e-e scattering at the Van Hove filling, which leads to a channel with
attractive coupling when making the projection of the BCS vertex on the
symmetry modes with nontrivial angular dependence along the Fermi line. We show
that the scale of the superconducting instability may be pushed up to
temperatures larger than 10 K, depending on the ability to tune the system to
the proximity of the Van Hove singularity.Comment: 5 pages, 3 figure
- …