29,331 research outputs found

    Recovery of normal heat conduction in harmonic chains with correlated disorder

    Full text link
    We consider heat transport in one-dimensional harmonic chains with isotopic disorder, focussing our attention mainly on how disorder correlations affect heat conduction. Our approach reveals that long-range correlations can change the number of low-frequency extended states. As a result, with a proper choice of correlations one can control how the conductivity κ\kappa scales with the chain length NN. We present a detailed analysis of the role of specific long-range correlations for which a size-independent conductivity is exactly recovered in the case of fixed boundary conditions. As for free boundary conditions, we show that disorder correlations can lead to a conductivity scaling as κNε\kappa \sim N^{\varepsilon}, with the scaling exponent ε\varepsilon being arbitrarily small (although not strictly zero), so that normal conduction is almost recovered even in this case.Comment: 15 pages, 2 figure

    Modulation of Kekul\'e adatom ordering due to strain in graphene

    Full text link
    Intervalley scattering of carriers in graphene at `top' adatoms may give rise to a hidden Kekul\'e ordering pattern in the adatom positions. This ordering is the result of a rapid modulation in the electron-mediated interaction between adatoms at the wavevector KKK- K', which has been shown experimentally and theoretically to dominate their spatial distribution. Here we show that the adatom interaction is extremely sensitive to strain in the supporting graphene, which leads to a characteristic spatial modulation of the Kekul\'e order as a function of adatom distance. Our results suggest that the spatial distributions of adatoms could provide a way to measure the type and magnitude of strain in graphene and the associated pseudogauge field with high accuracy.Comment: 9 pages, 7 figure

    Room temperature ferromagnetic-like behavior in Mn-implanted and post-annealed InAs layers deposited by Molecular Beam Epitaxy

    Get PDF
    We report on the magnetic and structural properties of Ar and Mn implanted InAs epitaxial films grown on GaAs (100) by Molecular Beam Epitaxy (MBE) and the effect of Rapid Thermal Annealing (RTA) for 30 seconds at 750C. Channeling Particle Induced X- ray Emission (PIXE) experiments reveal that after Mn implantation almost all Mn atoms are subsbtitutional in the In-site of the InAs lattice, like in a diluted magnetic semiconductor (DMS). All of these samples show diamagnetic behavior. But, after RTA treatment the Mn-InAs films exhibit room-temperature magnetism. According to PIXE measurements the Mn atoms are no longer substitutional. When the same set of experiments were performed with As as implantation ion all of the layers present diamagnetism without exception. This indicates that the appearance of room-temperature ferromagnetic-like behavior in the Mn-InAs-RTA layer is not related to lattice disorder produce during implantation, but to a Mn reaction produced after a short thermal treatment. X-ray diffraction patterns (XRD) and Rutherford Back Scattering (RBS) measurements evidence the segregation of an oxygen deficient-MnO2 phase (nominally MnO1.94) in the Mn-InAs-RTA epitaxial layers which might be on the origin of room temperature ferromagnetic-like response observed.Comment: 16 pages, 5 figures. Acepted in J. Appl. Phy

    Topological features of hydrogenated graphene

    Full text link
    Hydrogen adatoms are one of the most the promising proposals for the functionalization of graphene. Hydrogen induces narrow resonances near the Dirac energy, which lead to the formation of magnetic moments. Furthermore, they also create local lattice distortions which enhance the spin-orbit coupling. The combination of magnetism and spin-orbit coupling allows for a rich variety of phases, some of which have non trivial topological features. We analyze the interplay between magnetism and spin-orbit coupling in ordered arrays of hydrogen on graphene monolayers, and classify the different phases that may arise. We extend our model to consider arrays of adsorbates in graphene-like crystals with stronger intrinsic spin-orbit couplings.Comment: 6 pages, 4 figure
    corecore