8 research outputs found

    Cephalopod biology and care, a COST FA1301 (CephsInAction) training school: anaesthesia and scientific procedures

    No full text
    Cephalopods are the sole invertebrates included in the list of regulated species following the Directive 2010/63/EU. According to the Directive, achieving competence through adequate training is a requisite for people having a role in the different functions (article 23) as such carrying out procedures on animals, designing procedures and projects, taking care of animals, killing animals. Cephalopod Biology and Care Training Program is specifically designed to comply with the requirements of the "working document on the development of a common education and training framework to fulfil the requirements under the Directive 2010/63/EU". The training event occurred at the ICM-CSIC in Barcelona (Spain) where people coming from Europe, America and Asia were instructed on how to cope with regulations for the use of cephalopod molluscs for scientific purposes. The training encompasses discussion on the guidelines for the use and care of animals and their welfare with particular reference to procedures that may be of interest for neuroscience. Intensive discussion has been carried out during the training sessions with focus on behavioural studies and paradigms, welfare assessment, levels of severity of scientific procedures, animal care, handling, transport, individual identification and marking, substance administration, anaesthesia, analgesia and humane killing

    The management of acute venous thromboembolism in clinical practice - study rationale and protocol of the European PREFER in VTE Registry

    Get PDF
    Background: Venous thromboembolism (VTE) is a major health problem, with over one million events every year in Europe. However, there is a paucity of data on the current management in real life, including factors influencing treatment pathways, patient satisfaction, quality of life (QoL), and utilization of health care resources and the corresponding costs. The PREFER in VTE registry has been designed to address this and to understand medical care and needs as well as potential gaps for improvement. Methods/design: The PREFER in VTE registry was a prospective, observational, multicenter study conducted in seven European countries including Austria, France Germany, Italy, Spain, Switzerland, and the UK to assess the characteristics and the management of patients with VTE, the use of health care resources, and to provide data to estimate the costs for 12 months treatment following a first-time and/or recurrent VTE diagnosed in hospitals or specialized or primary care centers. In addition, existing anticoagulant treatment patterns, patient pathways, clinical outcomes, treatment satisfaction, and health related QoL were documented. The centers were chosen to reflect the care environment in which patients with VTE are managed in each of the participating countries. Patients were eligible to be enrolled into the registry if they were at least 18 years old, had a symptomatic, objectively confirmed first time or recurrent acute VTE defined as either distal or proximal deep vein thrombosis, pulmonary embolism or both. After the baseline visit at the time of the acute VTE event, further follow-up documentations occurred at 1, 3, 6 and 12 months. Follow-up data was collected by either routinely scheduled visits or by telephone calls. Results: Overall, 381 centers participated, which enrolled 3,545 patients during an observational period of 1 year. Conclusion: The PREFER in VTE registry will provide valuable insights into the characteristics of patients with VTE and their acute and mid-term management, as well as into drug utilization and the use of health care resources in acute first-time and/or recurrent VTE across Europe in clinical practice. Trial registration: Registered in DRKS register, ID number: DRKS0000479

    Guidelines for the use and interpretation of assays for monitoring autophagy

    No full text
    In 2008 we published the first set of guidelines for standardizing research in autophagy. Since then, research on this topic has continued to accelerate, and many new scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Accordingly, it is important to update these guidelines for monitoring autophagy in different organisms. Various reviews have described the range of assays that have been used for this purpose. Nevertheless, there continues to be confusion regarding acceptable methods to measure autophagy, especially in multicellular eukaryotes. A key point that needs to be emphasized is that there is a difference between measurements that monitor the numbers or volume of autophagic elements (e.g., autophagosomes or autolysosomes) at any stage of the autophagic process vs. those that measure flux through the autophagy pathway (i.e., the complete process); thus, a block in macroautophagy that results in autophagosome accumulation needs to be differentiated from stimuli that result in increased autophagic activity, defined as increased autophagy induction coupled with increased delivery to, and degradation within, lysosomes (in most higher eukaryotes and some protists such as Dictyostelium) or the vacuole (in plants and fungi). In other words, it is especially important that investigators new to the field understand that the appearance of more autophagosomes does not necessarily equate with more autophagy. In fact, in many cases, autophagosomes accumulate because of a block in trafficking to lysosomes without a concomitant change in autophagosome biogenesis, whereas an increase in autolysosomes may reflect a reduction in degradative activity. Here, we present a set of guidelines for the selection and interpretation of methods for use by investigators who aim to examine macroautophagy and related processes, as well as for reviewers who need to provide realistic and reasonable critiques of papers that are focused on these processes. These guidelines are not meant to be a formulaic set of rules, because the appropriate assays depend in part on the question being asked and the system being used. In addition, we emphasize that no individual assay is guaranteed to be the most appropriate one in every situation, and we strongly recommend the use of multiple assays to monitor autophagy. In these guidelines, we consider these various methods of assessing autophagy and what information can, or cannot, be obtained from them. Finally, by discussing the merits and limits of particular autophagy assays, we hope to encourage technical innovation in the field
    corecore