68 research outputs found
Multi-disciplinary investigation of fluid seepage on an unstable margin: The case of the Central Nile deep sea fan
We report on a multidisciplinary study of cold seeps explored in the Central Nile deep-sea fan of the Egyptian margin. Our approach combines in situ seafloor observation, geophysics, sedimentological data, measurement of bottom-water methane anomalies, pore-water and sediment geochemistry, and 230Th/U dating of authigenic carbonates. Two areas were investigated, which correspond to different sedimentary provinces. The lower slope, at ∼ 2100 m water depth, indicates deformation of sediments by gravitational processes, exhibiting slope-parallel elongated ridges and seafloor depressions. In contrast, the middle slope, at ∼ 1650 m water depth, exhibits a series of debris-flow deposits not remobilized by post-depositional gravity processes.
Significant differences exist between fluid-escape structures from the two studied areas. At the lower slope, methane anomalies were detected in bottom-waters above the depressions, whereas the adjacent ridges show a frequent coverage of fractured carbonate pavements associated with chemosynthetic vent communities. Carbonate U/Th age dates (∼ 8 kyr BP), pore-water sulphate and solid phase sediment data suggest that seepage activity at those carbonate ridges has decreased over the recent past. In contrast, large (∼ 1 km2) carbonate-paved areas were discovered in the middle slope, with U/Th isotope evidence for ongoing carbonate precipitation during the Late Holocene (since ∼ 5 kyr BP at least).
Our results suggest that fluid venting is closely related to sediment deformation in the Central Nile margin. It is proposed that slope instability leads to focused fluid flow in the lower slope and exposure of ‘fossil’ carbonate ridges, whereas pervasive diffuse flow prevails at the unfailed middle slope
Mineralization kinetics of biosiliceous sediments in hot subseafloors
Temperature affects the timing of the transformation of amorphous silica (opal-A) into crystalline (opal-CT) exponentially. Thus, in hot subseafloor environments opal-A is expected to convert into opal-CT at relatively shallow burial depths, where in situ temperatures do not exceed ∼56 °C, as it has been previously observed at various deep-sea sites and in onshore rock outcrops as well as assessed during lab experiments. The response of biosilica (biogenic opal-A) diagenesis to steep geothermal gradients (∼224–529 °C/km) at extremely high sedimentation rates (∼1 m/kyr) was examined in cores from off-axis boreholes drilled by the International Ocean Discovery Program (IODP) Expedition 385 in the actively spreading, intrusive sill-riddled Guaymas Basin at the Gulf of California (Mexico) rifted margin. At three sites drilled by IODP Expedition 385 (U1545, U1546, and U1547), the conversion from amorphous opal (−A) to crystalline opal (−CT) occurs in relatively deep (up to ∼330 mbsf) and unexpectedly hot (in situ temperatures of ∼74–79 °C) subseafloor conditions. This observation indicates a significantly slower reaction kinetics of biosilica transformation than previously reported. A compilation of empirical data that include biosiliceous basins with a similarly hot subseafloor (Sea of Japan and Bering Sea) yield new kinetic parameters that account for the slower rates of silica transformation. Thus, current kinetic models for the prediction of opal-A to −CT conversion face limitations when burial rates exceed those typical of biogenic sedimentation in open-ocean conditions. At Guaymas Basin Site U1545, where there is no evidence of sill-related metamorphic overprint, the d-spacing of the opal-CT (101) peak correlates linearly with in situ temperature between ∼75 and 110 °C throughout the opal-CT zone, thus, providing a local silica paleothermometry proxy that can be used to calculate the maximum temperature to which opal-CT sediment has been subjected
Nitrogen isotope homogenization of dissolved ammonium with depth and 15N enrichment of ammonium during incorporation into expandable layer silicates in organic-rich marine sediment from Guaymas Basin, Gulf of California
Sedimentary nitrogen isotopic ratios are used as a proxy for ancient biogeochemical cycles on Earth's surface. It is generally accepted that sediment hole tops record primary signatures because organic nitrogen (ON) is predominant in this part of the hole. In contrast to such early to middle diagenetic stages, it is well known that heavier nitrogen isotope 15N tends to enrich in sedimentary rocks during later diagenetic and metamorphic stages. However, there are some critical gaps in our understanding of nitrogen isotopic alteration associated with abiotic processes during early-middle diagenesis. In this study, we examined the isotope ratios of ammonium nitrogen in interstitial water (IW) and total nitrogen (TN), including exchangeable ammonium and mineral nitrogen, in the solid-phase of organic-rich-sediment recovered by International Ocean Discovery Program (IODP) Expedition 385 cores drilled in the Guaymas Basin, Gulf of California, that contained ammonium-rich IW. The isotopic ratios (δ15N value) of TN are the most variable with depth compared to any other type of nitrogen. This variation can be interpreted as reflecting changes in the water mass environment in the basin caused by glacial–interglacial climate changes, modifying the δ15N values of the marine primary producers. Thus, the δ15N value of TN is a proxy for environmental change in the basin, while each component of TN shows different trends. The δ15N values of IW and exchangeable ammonium did not exhibit significant changes with depth, but the latter values are about 3 ‰ enriched in 15N. This may be due to advective transport of solute into adjacent layers followed by the formation of an isotopic equilibrium between IW and exchangeable ammonium in the case of fast sediment accumulation rate. The δ15N value of exchangeable ammonium is the highest among the other types of nitrogen with one exception, where the δ15N value of TN is the highest. The calculated δ15N values of ON based on mass balance are almost the same as those of associated TN in the shallow sediment layers (< 150 m below seafloor), but the difference in the δ15N values of TN and ON are significant in the deeper layers, where proportions of ON contents are <50%. In particular, in the layer where the δ15N value of TN is the highest, that of ON shows an even higher value and the difference reaches 3.5 ‰. The δ15N values of mineral nitrogen are similar to that of IW ammonium except the surface layers. Under such conditions, when δ15N value of TN is intermediate between those of mineral nitrogen and exchangeable ammonium, calculated δ15N value of ON is close to that of TN. On the other hand, if δ15N value of TN is out of the range between mineral nitrogen and exchangeable ammonium, it causes further difference in δ15N value of ON. It means that the fluctuation of δ15N values of TN is reduced relative to those of ON through depth. It has been considered that δ15N value of TN in sediment is similar to that of ON, and changes in the δ15N value of TN due to diagenesis are limited, but in such environment ON fluctuations over depth may be slightly underestimated
Global dataset of soil organic carbon in tidal marshes
Tidal marshes store large amounts of organic carbon in their soils. Field data quantifying soil organic carbon (SOC) stocks provide an important resource for researchers, natural resource managers, and policy-makers working towards the protection, restoration, and valuation of these ecosystems. We collated a global dataset of tidal marsh soil organic carbon (MarSOC) from 99 studies that includes location, soil depth, site name, dry bulk density, SOC, and/or soil organic matter (SOM). The MarSOC dataset includes 17,454 data points from 2,329 unique locations, and 29 countries. We generated a general transfer function for the conversion of SOM to SOC. Using this data we estimated a median (± median absolute deviation) value of 79.2 ± 38.1 Mg SOC ha−1 in the top 30 cm and 231 ± 134 Mg SOC ha−1 in the top 1 m of tidal marsh soils globally. This data can serve as a basis for future work, and may contribute to incorporation of tidal marsh ecosystems into climate change mitigation and adaptation strategies and policies
Global dataset of soil organic carbon in tidal marshes.
Tidal marshes store large amounts of organic carbon in their soils. Field data quantifying soil organic carbon (SOC) stocks provide an important resource for researchers, natural resource managers, and policy-makers working towards the protection, restoration, and valuation of these ecosystems. We collated a global dataset of tidal marsh soil organic carbon (MarSOC) from 99 studies that includes location, soil depth, site name, dry bulk density, SOC, and/or soil organic matter (SOM). The MarSOC dataset includes 17,454 data points from 2,329 unique locations, and 29 countries. We generated a general transfer function for the conversion of SOM to SOC. Using this data we estimated a median (± median absolute deviation) value of 79.2 ± 38.1 Mg SOC ha-1 in the top 30 cm and 231 ± 134 Mg SOC ha-1 in the top 1 m of tidal marsh soils globally. This data can serve as a basis for future work, and may contribute to incorporation of tidal marsh ecosystems into climate change mitigation and adaptation strategies and policies
Calcium isotope fractionation and its controlling factors over authigenic carbonates in the cold seeps of the northern South China Sea
In this study, we analyzed stable calcium isotope results of authigenic carbonates from two cold seep areas of the Dongsha area and the Baiyun Sag in the northern South China Sea. The stable isotopes of carbon and oxygen as well as the mineral composition of authigenic carbonates were used to investigate control calcium isotope fractionation. The δ 44/40Ca ratios of the southwestern Dongsha area samples ranged from 1.21‰ to 1.52‰ and the ratio of the Baiyun Sag sample was 1.55‰ of the SRM915a isotope standard. X-ray diffraction analysis showed that the carbonate samples consisted of dolomite, calcite and aragonite, with small amounts of high-Mg calcite and siderite. The δ 13C values of the carbonates of the southwestern Dongsha area varied between −49.21‰ and −16.86‰ of the Vienna PeeDee Belemnite (VPDB) standard and the δ 18O values ranged from 2.25‰ to 3.72‰ VPDB. The δ 13C value of the Baiyun Sag sample was 2.36‰ VPDB and the δ 18O value was 0.44‰ VPDB. The δ 13C values of the carbonates of the southwestern Dongsha area revealed there is methane seeping into this area, with a variable contribution of methane-derived carbon. The sampled carbonates covered a range of δ 13C values suggesting a dominant methane carbon source for the light samples and mixtures of δ 13C values for the heavier samples, with possibly an organic or seawater carbon source. The δ 18O values indicated that there is enrichment in 18O, which is related to the larger oxygen isotope fractionation in dolomite compared to calcite. The results of the Baiyun Sag sample exhibited normal seawater carbon and oxygen isotopic values, indicating that this sample is not related to methane seepage but instead to precipitation from seawater. The relatively high δ 44/40Ca values indicated either precipitation at comparatively high rates in pore-water regimes with high alkalinity, or precipitation from an evolved heavy fluid with high degrees of Ca consumption (Raleigh type fractionation). The dolomite samples from the Dongsha area revealed a clear correlation between the carbon and calcium isotope composition, indicating a link between the amount and/or rate of carbonate precipitation and methane contribution to the bicarbonate source. The results of the three stable isotope systems, mineralogy and petrography, show that mineral composition, the geochemical environment of authigenic carbonates and carbon source can control the calcium isotope fractionation.This work was supported by the Knowledge Innovation Program of the Chinese Academy of Sciences (KZCX2-YW-GJ03-01), the National Natural Science Foundation of China (40706022, U0733003 and 41176052), the National Basic Research Program of China (2009CB219502-4) and the Knowledge Innovation Program of South China Sea Institute of Oceanology, Chinese Academy of Sciences (LYQY200806). The authors thank the University of Aveiro and Universität Münster for the facilities provided for this research. We appreciate the thoughtful and constructive comments provided by editors and reviewers, which improve the manuscript.publishe
Global dataset of soil organic carbon in tidal marshes
Tidal marshes store large amounts of organic carbon in their soils. Field data quantifying soil organic carbon (SOC) stocks provide an important resource for researchers, natural resource managers, and policy-makers working towards the protection, restoration, and valuation of these ecosystems. We collated a global dataset of tidal marsh soil organic carbon (MarSOC) from 99 studies that includes location, soil depth, site name, dry bulk density, SOC, and/or soil organic matter (SOM). The MarSOC dataset includes 17,454 data points from 2,329 unique locations, and 29 countries. We generated a general transfer function for the conversion of SOM to SOC. Using this data we estimated a median (± median absolute deviation) value of 79.2 ± 38.1 Mg SOC ha−1 in the top 30 cm and 231 ± 134 Mg SOC ha−1 in the top 1 m of tidal marsh soils globally. This data can serve as a basis for future work, and may contribute to incorporation of tidal marsh ecosystems into climate change mitigation and adaptation strategies and policies
Palaeo methane-seepage history traced by biomarker patterns in a carbonate crust, Nile deep-sea fan (Eastern Mediterranean Sea)
International audienc
- …