5,572 research outputs found
Signals for New Spin-1 Resonances in Electroweak Gauge Boson Pair Production at the LHC
The mechanism of electroweak symmetry breaking (EWSB) will be directly
scrutinized soon at the CERN Large Hadron Collider (LHC). We analyze the LHC
potential to look for new vector bosons associated with the EWSB sector. We
present a possible model independent approach to search for these new spin--1
resonances. We show that the analyses of the processes pp --> l^+ l^- Emiss_T,
l^\pm j j Emiss_T, l^\pm l^+ l^- Emiss_T, and l^+ l^- j j (with l=e or \mu and
j=jet) have a large reach at the LHC and can lead to the discovery or exclusion
of many EWSB scenarios such as Higgsless models.Comment: 10 pages, 11 figure
Monitoring two small catchments to evaluate effects of no-tillage agricultural management in SĂŁo Paulo state, Brazil.
In recent years, declines in water and soil quality have been observed in areas of Brazil where no-till agriculture had been previously implemented. Poor soil management associated with the absence of public policies has caused soil erosion, because many farmers are moving back from no-till to traditional cultivation for faster economic gains. A research project ? SoloVivo Project - leaded by Embrapa (Brazilian Agricultural Research Corporation) in partnership with Itaipu Binacional aims to develop and validate, in a participatory way, tools to evaluate the technical performance of soil and water management at the rural properties that practice notill agriculture. In this context we have selected two paired small (< 100 ha) catchments in the Paranapanema region, SĂŁo Paulo State, where no-till management is practiced at two different degrees of effectiveness. In the figure bellow it can be seen a scene of one of the two studied catchments. For monitoring rainfall, soil solution and stream water, each catchment will be equipped with a programmable datalogger (with cell phone communication for data collection) linked to: a high intensity tipping bucket rain gage; a reflectometer to monitor soil volumetric water content, bulk electric conductivity and temperature; a radar water level sensor; a turbidity sensor; and an electric conductivity-temperature probe. We expect that stream flow and sediment generation, besides water quality (measured by conductivity) may serve as indicators of the benefits of no-tillage agriculture done more or less well. The results of this study will be used to stimulate discussions at workshops with the farmers who participate in a rural producers association in the region. In addition this and other results can be used to help the Brazilian National Water Agency (ANA) decide about applying no-till agricultural management systems in its programs of payment for environmental services
Global Alfven Wave Heating of the Magnetosphere of Young Stars
Excitation of a Global Alfven wave (GAW) is proposed as a viable mechanism to
explain plasma heating in the magnetosphere of young stars. The wave and basic
plasma parameters are compatible with the requirement that the dissipation
length of GAWs be comparable to the distance between the shocked region at the
star's surface and the truncation region in the accretion disk. A two-fluid
magnetohydrodynamic plasma model is used in the analysis. A current carrying
filament along magnetic field lines acts as a waveguide for the GAW. The
current in the filament is driven by plasma waves along the magnetic field
lines and/or by plasma crossing magnetic field lines in the truncated region of
the disk of the accreting plasma. The conversion of a small fraction of the
kinetic energy into GAW energy is sufficient to heat the plasma filament to
observed temperatures.Comment: Submitted to ApJ, aheatf.tex, 2 figure
A time frequency analysis of wave packet fractional revivals
We show that the time frequency analysis of the autocorrelation function is,
in many ways, a more appropriate tool to resolve fractional revivals of a wave
packet than the usual time domain analysis. This advantage is crucial in
reconstructing the initial state of the wave packet when its coherent structure
is short-lived and decays before it is fully revived. Our calculations are
based on the model example of fractional revivals in a Rydberg wave packet of
circular states. We end by providing an analytical investigation which fully
agrees with our numerical observations on the utility of time-frequency
analysis in the study of wave packet fractional revivals.Comment: 9 pages, 4 figure
Factors controlling spatio-temporal variation in carbon dioxide efflux from surface litter, roots, and soil organic matter at four rain forest sites in the eastern Amazon
[1] This study explored biotic and abiotic causes for spatio-temporal variation in soil respiration from surface litter, roots, and soil organic matter over one year at four rain forest sites with different vegetation structures and soil types in the eastern Amazon, Brazil. Estimated mean annual soil respiration varied between 13-17 t C ha(-1) yr(-1), which was partitioned into 0-2 t C ha(-1) yr(-1) from litter, 6-9 t C ha(-1) yr(-1) from roots, and 5-6 t C ha(-1) yr(-1) from soil organic matter. Litter contribution showed no clear seasonal change, though experimental precipitation exclusion over a one-hectare area was associated with a ten-fold reduction in litter respiration relative to unmodified sites. The estimated mean contribution of soil organic matter respiration fell from 49% during the wet season to 32% in the dry season, while root respiration contribution increased from 42% in the wet season to 61% during the dry season. Spatial variation in respiration from soil, litter, roots, and soil organic matter was not explained by volumetric soil moisture or temperature. Instead, spatial heterogeneity in litter and root mass accounted for 44% of observed spatial variation in soil respiration (p < 0.001). In particular, variation in litter respiration per unit mass and root mass accounted for much of the observed variation in respiration from litter and roots, respectively, and hence total soil respiration. This information about patterns of, and underlying controls on, respiration from different soil components should assist attempts to accurately model soil carbon dioxide fluxes over space and time
- âŚ