279 research outputs found

    Collaborative Research: L TREB: Predicting the success of montane species in an era of climatic upheaval

    Get PDF

    A Continuous Correlated Beta Process Model for Genetic Ancestry in Admixed Populations

    Get PDF
    Admixture and recombination create populations and genomes with genetic ancestry from multiple source populations. Analyses of genetic ancestry in admixed populations are relevant for trait and disease mapping, studies of speciation, and conservation efforts. Consequently, many methods have been developed to infer genome-average ancestry and to deconvolute ancestry into continuous local ancestry blocks or tracts within individuals. Current methods for local ancestry inference perform well when admixture occurred recently or hybridization is ongoing, or when admixture occurred in the distant past such that local ancestry blocks have fixed in the admixed population. However, methods to infer local ancestry frequencies in isolated admixed populations still segregating for ancestry do not exist. In the current paper, I develop and test a continuous correlated beta process model to fill this analytical gap. The method explicitly models autocorrelations in ancestry frequencies at the population-level and uses discriminant analysis of SNP windows to take advantage of ancestry blocks within individuals. Analyses of simulated data sets show that the method is generally accurate such that ancestry frequency estimates exhibited low root-mean-square error and were highly correlated with the true values, particularly when large (±10 or ±20) SNP windows were used. Along these lines, the proposed method outperformed post hoc inference of ancestry frequencies from a traditional hidden Markov model (i.e., the linkage model in structure), particularly when admixture occurred more distantly in the past with little on-going gene flow or was followed by natural selection. The reliability and utility of the method was further assessed by analyzing genetic ancestry in an admixed human population (Uyghur) and three populations from a hybrid zone between Mus domesticus and M. musculus. Considerable variation in ancestry frequencies was detected within and among chromosomes in the Uyghur, with a large region of excess French ancestry harboring a gene with a known disease association. Similar variation was detected in the mouse hybrid zone, with notable constancy in regions of excess ancestry among admixed populations. By filling what has been an analytical gap, the proposed method should be a useful tool for many biologists. A computer program (popanc), written in C++, has been developed based on the proposed method and is available on-line at http://sourceforge.net/projects/popanc/

    CAREER: An integrated approach to understanding selection and evolution in heterogeneous environments

    Get PDF

    Effect of Three Classroom Research Experiences on Science Attitudes

    Get PDF
    Here we evaluate undergraduate student attitudes about science after each of three authentic research experiences in a semester of an introductory biology laboratory course at Utah State University. The three course-based research experiences (CUREs) vary in length and student freedom, and they cover different areas of biology. Students responded to the science attitude items of the CURE Survey. When compared to national data, our students faired similarly, and all students struggled with certain epistemic assumptions about science knowledge. As also seen in the national database, change in science attitude was slight and nonlinear. Student self confidence in what a career scientist is and in scientific process skills was the best predictor of scientific maturity, not the three CUREs or other aspects of students’ background. We discuss the slight positive and negative change in attitude we did influence, and we note that most students would choose to have another research experience

    Unexpected ancestry of Populus seedlings from a hybrid zone implies a large role for postzygotic selection in the maintenance of species

    Get PDF
    In the context of potential interspecific gene flow, the integrity of species will be maintained by reproductive barriers that reduce genetic exchange, including traits associated with prezygotic isolation or poor performance of hybrids. Hybrid zones can be used to study the importance of different reproductive barriers, particularly when both parental species and hybrids occur in close spatial proximity. We investigated the importance of barriers to gene flow that act early versus late in the life cycle of European Populus by quantifying the prevalence of homospecific and hybrid matings within a mosaic hybrid zone. We obtained genotypic data for 11,976 loci from progeny and their maternal parents and constructed a Bayesian model to estimate individual admixture proportions and hybrid classes for sampled trees, and for the unsampled pollen parent. Matings that included one or two hybrid parents were common, resulting in admixture proportions of progeny that spanned the whole range of potential ancestries between the two parental species. This result contrasts strongly with the distribution of admixture proportions in adult trees, where intermediate hybrids and each of the parental species are separated into three discrete ancestry clusters. The existence of the full range of hybrids in seedlings is consistent with weak reproductive isolation early in the life cycle of Populus. Instead, a considerable amount of selection must take place between the seedling stage and maturity to remove many hybrid seedlings. Our results highlight that high hybridization rates and appreciable hybrid fitness do not necessarily conflict with the maintenance of species integrity

    Increasing Our Ability to Predict Contemporary Evolution

    Get PDF
    Classic debates concerning the extent to which scientists can predict evolution have gained new urgency as environmental changes force species to adapt or risk extinction. We highlight how our ability to predict evolution can be constrained by data limitations that cause poor understanding of deterministic natural selection. We then emphasize how such data limits can be reduced with feasible empirical effort involving a combination of approaches

    A Hierarchical Bayesian Approach to Ecological Count Data: A Flexible Tool for Ecologists

    Get PDF
    Many ecological studies use the analysis of count data to arrive at biologically meaningful inferences. Here, we introduce a hierarchical Bayesian approach to count data. This approach has the advantage over traditional approaches in that it directly estimates the parameters of interest at both the individual-level and population-level, appropriately models uncertainty, and allows for comparisons among models, including those that exceed the complexity of many traditional approaches, such as ANOVA or non-parametric analogs. As an example, we apply this method to oviposition preference data for butterflies in the genus Lycaeides. Using this method, we estimate the parameters that describe preference for each population, compare the preference hierarchies among populations, and explore various models that group populations that share the same preference hierarchy

    THE VARIABLE GENOMIC ARCHITECTURE OF ISOLATION BETWEEN HYBRIDIZING SPECIES OF HOUSE MICE

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/75350/1/EVO_846_sm_FigS3A.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/75350/2/EVO_846_sm_legend.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/75350/3/EVO_846_sm_FigS4.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/75350/4/j.1558-5646.2009.00846.x.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/75350/5/EVO_846_sm_FigS1.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/75350/6/EVO_846_sm_FigS2.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/75350/7/EVO_846_sm_FigS3B.pd

    Spatiotemporal and ontogenetic variation, microbial selection, and predicted Bd-inhibitory function in the skin-associated microbiome of a Rocky Mountain amphibian

    Get PDF
    Host-associated microbiomes play important roles in host health and pathogen defense. In amphibians, the skin-associated microbiota can contribute to innate immunity with potential implications for disease management. Few studies have examined season-long temporal variation in the amphibian skin-associated microbiome, and the interactions between bacteria and fungi on amphibian skin remain poorly understood. We characterize season-long temporal variation in the skin-associated microbiome of the western tiger salamander (Ambystoma mavortium) for both bacteria and fungi between sites and across salamander life stages. Two hundred seven skin-associated microbiome samples were collected from salamanders at two Rocky Mountain lakes throughout the summer and fall of 2018, and 127 additional microbiome samples were collected from lake water and lake substrate. We used 16S rRNA and ITS amplicon sequencing with Bayesian Dirichlet-multinomial regression to estimate the relative abundances of bacterial and fungal taxa, test for differential abundance, examine microbial selection, and derive alpha diversity. We predicted the ability of bacterial communities to inhibit the amphibian chytrid fungus Batrachochytrium dendrobatidis (Bd), a cutaneous fungal pathogen, using stochastic character mapping and a database of Bd-inhibitory bacterial isolates. For both bacteria and fungi, we observed variation in community composition through time, between sites, and with salamander age and life stage. We further found that temporal trends in community composition were specific to each combination of salamander age, life stage, and lake. We found salamander skin to be selective for microbes, with many taxa disproportionately represented relative to the environment. Salamander skin appeared to select for predicted Bd-inhibitory bacteria, and we found a negative relationship between the relative abundances of predicted Bd-inhibitory bacteria and Bd. We hope these findings will assist in the conservation of amphibian species threatened by chytridiomycosis and other emerging diseases

    Recent Hybrids Recapitulate Ancient Hybrid Outcomes

    Get PDF
    Genomic outcomes of hybridization depend on selection and recombination in hybrids. Whether these processes have similar effects on hybrid genome composition in contemporary hybrid zones versus ancient hybrid lineages is unknown. Here we show that patterns of introgression in a contemporary hybrid zone in Lycaeides butterflies predict patterns of ancestry in geographically adjacent, older hybrid populations. We find a particularly striking lack of ancestry from one of the hybridizing taxa, Lycaeides melissa, on the Z chromosome in both the old and contemporary hybrids. The same pattern of reduced L. melissa ancestry on the Z chromosome is seen in two other ancient hybrid lineages. More generally, we find that patterns of ancestry in old or ancient hybrids are remarkably predictable from contemporary hybrids, which suggests selection and recombination affect hybrid genomes in a similar way across disparate time scales and during distinct stages of speciation and species breakdown
    • …
    corecore