107 research outputs found

    Understanding the Nanotube Growth Mechanism: A Strategy to Control Nanotube Chirality during Chemical Vapor Deposition Synthesis

    Get PDF
    For two decades, single-wall carbon nanotubes (SWCNTs) have captured the attention of the research community, and become one of the flagships of nanotechnology. Due to their remarkable electronic and optical properties, SWCNTs are prime candidates for the creation of novel and revolutionary electronic, medical, and energy technologies. However, a major stumbling block in the exploitation of nanotube-based technologies is the lack of control of nanotube structure (chirality) during synthesis, which is intimately related to the metallic or semiconductor character of the nanotube. Incomplete understanding of the nanotube growth mechanism hinders a rationale and cost-efficient search of experimental conditions that give way to structural (chiral) control. Thus, computational techniques such as density functional theory (DFT), and reactive molecular dynamics (RMD) are valuable tools that provide the necessary theoretical framework to guide the design of experiments. The nanotube chirality is determined by the helicity of the nanotube and its diameter. DFT calculations show that once a small nanotube 'seed' is nucleated, growth proceeds faster if the seed corresponds to a high chiral angle nanotube. Thus, a strategy to gain control of the nanotube structure during chemical vapor deposition synthesis must focus on controlling the structure of the nucleated nanotube seeds. DFT and RMD simulations demonstrate the viability of using the structures of catalyst particles over which nanotube growth proceeds as templates guiding nanotube growth toward desired chiralities. This effect occurs through epitaxial effects between the nanocatalyst and the nanotube growing on it. The effectiveness of such effects has a non-monotonic relationship with the size of the nanocatalyst, and its interaction with the support, and requires fine-tuning reaction conditions for its exploitation. RMD simulations also demonstrate that carbon bulk-diffusion and nanoparticle supersaturation are not needed to promote nanotube growth, hence reaction conditions that increase nanoparticle stability, but reduce carbon solubility, may be explored to achieve nanotube templated growth of desired chiralities. The effect of carbon dissolution was further demonstrated through analyses of calculated diffusion coefficients. The metallic nanocatalyst was determined to be in viscous solid state throughout growth, but with a less solid character during the induction/nucleation stage

    Water-stable zirconium-based metal-organic framework material with high-surface area and gas-storage capacities.

    Get PDF
    We designed, synthesized, and characterized a new Zr-based metal-organic framework material, NU-1100, with a pore volume of 1.53 ccg(-1) and Brunauer-Emmett-Teller (BET) surface area of 4020 m(2) g(-1) ; to our knowledge, currently the highest published for Zr-based MOFs. CH4 /CO2 /H2 adsorption isotherms were obtained over a broad range of pressures and temperatures and are in excellent agreement with the computational predictions. The total hydrogen adsorption at 65 bar and 77 K is 0.092 g g(-1) , which corresponds to 43 g L(-1) . The volumetric and gravimetric methane-storage capacities at 65 bar and 298 K are approximately 180 vSTP /v and 0.27 g g(-1) , respectively.OKF, JTH and RQS thank DOE ARPA-E and the Stanford Global Climate and Energy Project for support of work relevant to methane and CO2, respectively. TY acknowledges support by the U. S. Department of Energy through BES Grant No. DE-FG02-08ER46522. WB acknowledges support from the Foundation for Polish Science through the “Kolumb” Program. DFJ acknowledges the Royal Society (UK) for a University Research Fellowship. This material is based upon work supported by the National Science Foundation (grant CHE-1048773).This is the accepted manuscript. The final version is available as 'Water-Stable Zirconium-Based Metal–Organic Framework Material with High-Surface Area and Gas-Storage Capacities' from Wiley at http://onlinelibrary.wiley.com/doi/10.1002/chem.201402895/abstract

    Impact of the strength and spatial distribution of adsorption sites on methane deliverable capacity in nanoporous materials

    Get PDF
    The methane deliverable capacity of adsorbent materials is a critical performance metric that will determine the viability of using adsorbed natural gas (ANG) technology in vehicular applications. ARPA-E recently set a target deliverable capacity of 315 cc(STP)/cc that a viable adsorbent material should achieve to yield a driving range competitive with incumbent fuels. However, recent computational screening of hundreds of thousands of materials suggests that the target is unattainable. In this work, we aim to determine whether the observed limits in deliverable capacity (similar to 200 cc(STP)/cc) are fundamental limits arising from thermodynamic or material design constraints. Our efforts focus on simulating methane adsorption isotherms in a large number of systems, resulting in a broad exploration of different combinations of spatial distributions and energetics of adsorption sites. All systems were classified into five adsorption scenarios with varying degrees of realism in the manner that adsorption sites are created and endowed with energetics. The scenarios range from methane adsorption on discrete idealized lattice sites to adsorption in metal-organic frameworks with coordinatively unsaturated sites (CUS) provided by metalated catechol groups. Our findings strongly suggest that the ARPA-E target is unattainable, although not due to thermodynamic constraints but due to material design constraints. On the other hand, we also find that the currently observed deliverable capacity limits may be moderately surpassed. For instance, incorporation of CUS in IRMOF-10 is predicted to yield a 217 cc(STP)/cc deliverable capacity. The modified material has a similar to 0.85 void fraction and a heat of adsorption of similar to 15 kJ/mol. This suggests that similar, moderate improvements over existing materials could be achieved as long as CUS incorporation still maintains a relatively large void fraction. Nonetheless, we conclude that more significant improvements in deliverable capacity will require changes in the currently proposed operation conditions. (C) 2016 Elsevier Ltd. All rights reserved

    Bottom-up construction of a superstructure in a porous uranium-organic crystal

    Get PDF
    Bottom-up construction of highly intricate structures from simple building blocks remains one of the most difficult challenges in chemistry. We report a structurally complex, mesoporous uranium-based metal-organic framework (MOF) made from simple starting components. The structure comprises 10 uranium nodes and seven tricarboxylate ligands (both crystallographically nonequivalent), resulting in a 173.3-angstrom cubic unit cell enclosing 816 uranium nodes and 816 organic linkers—the largest unit cell found to date for any nonbiological material. The cuboctahedra organize into pentagonal and hexagonal prismatic secondary structures, which then form tetrahedral and diamond quaternary topologies with unprecedented complexity. This packing results in the formation of colossal icosidodecahedral and rectified hexakaidecahedral cavities with internal diameters of 5.0 nanometers and 6.2 nanometers, respectively—ultimately giving rise to the lowest-density MOF reported to date

    Covalently linked organic networks

    Get PDF
    In this review, we intend to give an overview of the synthesis of well-defined covalently bound organic network materials such as covalent organic frameworks, conjugated microporous frameworks, and other "ideal polymer networks" and discuss the different approaches in their synthesis and their potential applications. In addition we will describe the common computational approaches and highlight recent achievements in the computational study of their structure and properties. For further information, the interested reader is referred to several excellent and more detailed reviews dealing with the synthesis (Dawson et al., 2012; Ding andWang, 2013; Feng et al., 2012) and computational aspects (Han et al., 2009; ColĂłn and Snurr, 2014) of the materials presented here

    Protein moonlighting in parasitic protists

    Get PDF
    Reductive evolution during the adaptation to obligate parasitism and expansions of gene families encoding virulence factors are characteristics evident to greater or lesser degrees in all parasitic protists studied to date. Large evolutionary distances separate many parasitic protists from the yeast and animal models upon which classic views of eukaryotic biochemistry are often based. Thus a combination of evolutionary divergence, niche adaptation and reductive evolution means the biochemistry of parasitic protists is often very different from their hosts and to other eukaryotes generally, making parasites intriguing subjects for those interested in the phenomenon of moonlighting proteins. In common with other organisms, the contribution of protein moonlighting to parasite biology is only just emerging, and it is not without controversy. Here, an overview of recently identified moonlighting proteins in parasitic protists is provided, together with discussion of some of the controversies

    Mixed-linker UiO-66: structure–property relationships revealed by a combination of high-resolution powder X-ray diffraction and density functional theory calculations

    Get PDF
    The use of mixed-linker metal–organic frameworks (MIXMOFs) is one of the most effective strategies to modulate the physical–chemical properties of MOFs without affecting the overall crystal structure. In many instances, MIXMOFs have been recognized as solid solutions, with random distribution of ligands, in agreement with the empirical rule known as Vegard's law. In this work, we have undertaken a study combining high-resolution powder X-ray diffraction (HR-PXRD) and density functional theory (DFT) calculations with the aim of understanding the reasons why UiO-66-based amino- and bromo-functionalized MIXMOFs (MIXUiO-66) undergo cell expansion obeying Vegard's law and how this behaviour is related to their physical–chemical properties. DFT calculations predict that the unit cell in amino-functionalized UiO-66 experiences only minor expansion as a result of steric effects, whereas major modification to the electronic features of the framework leads to weaker metal–linker interaction and consequently to the loss of stability at higher degrees of functionalization. For bromo-functionalized UiO-66, steric repulsion due to the size of bromine yields a large cell expansion, but the electronic features remain very similar to pristine UiO-66, preserving the stability of the framework upon functionalization. MIXUiO-66 obtained by either direct synthesis or by post-synthetic exchange shows Vegard-like behaviour, suggesting that both preparation methods yield solid solutions, but the thermal stability and the textural properties of the post-synthetic exchanged materials do not display a clear dependence on the chemical composition, as observed for the MOFs obtained by direct synthesis

    Oxygen-rich microporous carbons with exceptional hydrogen storage capacity

    Get PDF
    Porous carbons have been extensively investigated for hydrogen storage but, to date, appear to have an upper limit to their storage capacity. Here, in an effort to circumvent this upper limit, we explore the potential of oxygen-rich activated carbons. We describe cellulose acetatederived carbons that combine high surface area (3800 m2 g-1) and pore volume (1.8 cm3 g-1) that arise almost entirely (> 90%) from micropores, with an oxygen-rich nature. The carbons exhibit enhanced gravimetric hydrogen uptake (8.1 wt% total, and 7.0 wt% excess) at -196 ÂșC and 20 bar, rising to a total uptake of 8.9 wt% at 30 bar, and exceptional volumetric uptake of 44 g l-1 at 20 bar, and 48 g l-1 at 30 bar. At room temperature they store up to 0.8 wt% (excess) and 1.2 wt% (total) hydrogen at only 30 bar, and their isosteric heat of hydrogen adsorption is above 10 kJ mol-1

    Cigarette butt-derived carbons have ultra-high surface area and unprecedented hydrogen storage capacity

    Get PDF
    Discarded cigarette filters, in the form of cigarette butts, are a major waste disposal and environmental pollution hazard due to mainly containing cellulose acetate which is nonbiodegradable; 5.8 trillion cigarettes are smoked worldwide per annum generating > 800 000 metric tons of cigarette butts. Apart from causing litter, cigarette butts contain contaminants such as toxic heavy metals, which can leach into waterways, potentially causing harm to both humans and wildlife. In an effort to turn dangerous waste into value products, this study explores the valorisation of discarded smoked cigarette filters/butts. We show that porous carbons derived from cigarette butts, via sequential benign hydrothermal carbonisation and activation, are super porous and have ultra-high surface area (4300 m2 g-1) and pore volume (2.09 cm3 g-1) arising almost entirely (> 90%) from micropores. The carbons also have uncharacteristically high oxygen content associated with O-containing functional groups (COOH, C-OH and C=O), and show anomalous behaviour with respect to the effect of activation temperature on porosity, the latter being ascribable to the chemical mix present in cigarette butts and their hydrochar products. Due to the combined effects of high surface area, high microporosity and an oxygen-rich nature, the carbons exhibit unprecedentedly high hydrogen storage capacity of 8.1 wt% excess uptake, and 9.4 wt% total uptake at -196 ÂșC and 20 bar, rising to total uptake of 10.4 wt% and 11.2 wt% at 30 and 40 bar, respectively. The hydrogen storage capacity is the highest reported to date for any porous carbons and attains new levels for porous materials in general. This work also raises the question on whether valorisation can solve the intractable cigarette butt problem
    • 

    corecore