19 research outputs found

    Investigation of dmyc

    No full text

    Networking for advanced molecular diagnosis in acute myeloid leukemia patients is possible: the PETHEMA NGS-AML project

    No full text
    Next-Generation Sequencing has recently been introduced to efficiently and simultaneously detect genetic variations in acute myeloid leukemia. However, its implementation in the clinical routine raises new challenges focused on the diversity of assays and variant reporting criteria. To overcome this challenge, the PETHEMA group established a nationwide network of reference laboratories aimed to deliver molecular results in the clinics. We report the technical cross-validation results for next-generation sequencing panel genes during the standardization process and the clinical validation in 823 samples of 751 patients with newly diagnosed or refractory/relapse acute myeloid leukemia. Two cross-validation rounds were performed in seven nationwide reference laboratories in order to reach a consensus regarding quality metrics criteria and variant reporting. In the pre-standardization cross-validation round, an overall concordance of 60.98% was obtained with a great variability in selected genes and conditions across laboratories. After consensus of relevant genes and optimization of quality parameters the overall concordance rose to 85.57% in the second cross-validation round. We show that a diagnostic network with harmonized next-generation sequencing analysis and reporting in seven experienced laboratories is feasible in the context of a scientific group

    Networking for advanced molecular diagnosis in acute myeloid leukemia patients is possible: the PETHEMA NGS-AML project

    No full text
    Next-Generation Sequencing has recently been introduced to efficiently and simultaneously detect genetic variations in acute myeloid leukemia. However, its implementation in the clinical routine raises new challenges focused on the diversity of assays and variant reporting criteria. To overcome this challenge, the PETHEMA group established a nationwide network of reference laboratories aimed to deliver molecular results in the clinics. We report the technical cross-validation results for next-generation sequencing panel genes during the standardization process and the clinical validation in 823 samples of 751 patients with newly diagnosed or refractory/relapse acute myeloid leukemia. Two cross-validation rounds were performed in seven nationwide reference laboratories in order to reach a consensus regarding quality metrics criteria and variant reporting. In the pre-standardization cross-validation round, an overall concordance of 60.98% was obtained with a great variability in selected genes and conditions across laboratories. After consensus of relevant genes and optimization of quality parameters the overall concordance rose to 85.57% in the second cross-validation round. We show that a diagnostic network with harmonized next-generation sequencing analysis and reporting in seven experienced laboratories is feasible in the context of a scientific group

    Accelerated surgery versus standard care in hip fracture (HIP ATTACK) : an international, randomised, controlled trial

    No full text
    Background: Observational studies have suggested that accelerated surgery is associated with improved outcomes in patients with a hip fracture. The HIP ATTACK trial assessed whether accelerated surgery could reduce mortality and major complications. Methods: HIP ATTACK was an international, randomised, controlled trial done at 69 hospitals in 17 countries. Patients with a hip fracture that required surgery and were aged 45 years or older were eligible. Research personnel randomly assigned patients (1:1) through a central computerised randomisation system using randomly varying block sizes to either accelerated surgery (goal of surgery within 6 h of diagnosis) or standard care. The coprimary outcomes were mortality and a composite of major complications (ie, mortality and non-fatal myocardial infarction, stroke, venous thromboembolism, sepsis, pneumonia, life-threatening bleeding, and major bleeding) at 90 days after randomisation. Patients, health-care providers, and study staff were aware of treatment assignment, but outcome adjudicators were masked to treatment allocation. Patients were analysed according to the intention-to-treat principle. This study is registered at ClinicalTrials.gov (NCT02027896). Findings: Between March 14, 2014, and May 24, 2019, 27 701 patients were screened, of whom 7780 were eligible. 2970 of these were enrolled and randomly assigned to receive accelerated surgery (n=1487) or standard care (n=1483). The median time from hip fracture diagnosis to surgery was 6 h (IQR 4\u20139) in the accelerated-surgery group and 24 h (10\u201342) in the standard-care group (p<0\ub70001). 140 (9%) patients assigned to accelerated surgery and 154 (10%) assigned to standard care died, with a hazard ratio (HR) of 0\ub791 (95% CI 0\ub772 to 1\ub714) and absolute risk reduction (ARR) of 1% ( 121 to 3; p=0\ub740). Major complications occurred in 321 (22%) patients assigned to accelerated surgery and 331 (22%) assigned to standard care, with an HR of 0\ub797 (0\ub783 to 1\ub713) and an ARR of 1% ( 122 to 4; p=0\ub771). Interpretation: Among patients with a hip fracture, accelerated surgery did not significantly lower the risk of mortality or a composite of major complications compared with standard care. Funding: Canadian Institutes of Health Research

    Erratum: International Nosocomial Infection Control Consortium report, data summary of 43 countries for 2007-2012. Device-associated module (American Journal of Infection Control (2014) 42 (942-956))

    No full text

    Euclid. I. Overview of the Euclid mission

    No full text
    International audienceThe current standard model of cosmology successfully describes a variety of measurements, but the nature of its main ingredients, dark matter and dark energy, remains unknown. Euclid is a medium-class mission in the Cosmic Vision 2015-2025 programme of the European Space Agency (ESA) that will provide high-resolution optical imaging, as well as near-infrared imaging and spectroscopy, over about 14,000 deg^2 of extragalactic sky. In addition to accurate weak lensing and clustering measurements that probe structure formation over half of the age of the Universe, its primary probes for cosmology, these exquisite data will enable a wide range of science. This paper provides a high-level overview of the mission, summarising the survey characteristics, the various data-processing steps, and data products. We also highlight the main science objectives and expected performance

    Euclid. I. Overview of the Euclid mission

    No full text
    The current standard model of cosmology successfully describes a variety of measurements, but the nature of its main ingredients, dark matter and dark energy, remains unknown. Euclid is a medium-class mission in the Cosmic Vision 2015-2025 programme of the European Space Agency (ESA) that will provide high-resolution optical imaging, as well as near-infrared imaging and spectroscopy, over about 14,000 deg^2 of extragalactic sky. In addition to accurate weak lensing and clustering measurements that probe structure formation over half of the age of the Universe, its primary probes for cosmology, these exquisite data will enable a wide range of science. This paper provides a high-level overview of the mission, summarising the survey characteristics, the various data-processing steps, and data products. We also highlight the main science objectives and expected performance

    Euclid. I. Overview of the Euclid mission

    No full text
    International audienceThe current standard model of cosmology successfully describes a variety of measurements, but the nature of its main ingredients, dark matter and dark energy, remains unknown. Euclid is a medium-class mission in the Cosmic Vision 2015-2025 programme of the European Space Agency (ESA) that will provide high-resolution optical imaging, as well as near-infrared imaging and spectroscopy, over about 14,000 deg^2 of extragalactic sky. In addition to accurate weak lensing and clustering measurements that probe structure formation over half of the age of the Universe, its primary probes for cosmology, these exquisite data will enable a wide range of science. This paper provides a high-level overview of the mission, summarising the survey characteristics, the various data-processing steps, and data products. We also highlight the main science objectives and expected performance

    Euclid. I. Overview of the Euclid mission

    No full text
    International audienceThe current standard model of cosmology successfully describes a variety of measurements, but the nature of its main ingredients, dark matter and dark energy, remains unknown. Euclid is a medium-class mission in the Cosmic Vision 2015-2025 programme of the European Space Agency (ESA) that will provide high-resolution optical imaging, as well as near-infrared imaging and spectroscopy, over about 14,000 deg^2 of extragalactic sky. In addition to accurate weak lensing and clustering measurements that probe structure formation over half of the age of the Universe, its primary probes for cosmology, these exquisite data will enable a wide range of science. This paper provides a high-level overview of the mission, summarising the survey characteristics, the various data-processing steps, and data products. We also highlight the main science objectives and expected performance
    corecore