20 research outputs found

    Kidney-Derived c-Kit(+) Cells Possess Regenerative Potential

    Get PDF
    Kidney-derived c-Kit(+) cells exhibit progenitor/stem cell properties in vitro (self-renewal capacity, clonogenicity, and multipotentiality). These cells can regenerate epithelial tubular cells following ischemia-reperfusion injury and accelerate foot processes effacement reversal in a model of acute proteinuria in rats. Several mechanisms are involved in kidney regeneration by kidney-derived c-Kit(+ )cells, including cell engraftment and differentiation into renal-like structures, such as tubules, vessels, and podocytes. Moreover, paracrine mechanisms could also account for kidney regeneration, either by stimulating proliferation of surviving cells or modulating autophagy and podocyte cytoskeleton rearrangement through mTOR-Raptor and -Rictor signaling, which ultimately lead to morphological and functional improvement. To gain insights into the functional properties of c-Kit(+) cells during kidney development, homeostasis, and disease, studies on lineage tracing using transgenic mice will unveil their fate. The results obtained from these studies will set the basis for establishing further investigation on the therapeutic potential of c-Kit(+) cells for treatment of kidney disease in preclinical and clinical studies.Conselho Nacional em Pesquisa e Desenvolvimento (CNPq)Fundacao de Amparo a Pesquisa do Estado de Sao Paulo (FAPESP)European Foundation for the Study of Diabetes (EFSD)Univ Sao Paulo, Renal Div, Lab Cellular Genet & Mol Nephrol, Sao Paulo, SP, BrazilUniv Miami, Leonard M Miller Sch Med, Interdisciplinary Stem Cell Inst, Miami, FL USAUniv Miami, Leonard M Miller Sch Med, Dept Mol & Cellular Pharmacol, Miami, FL USAUniv Miami, Div Cardiol, Leonard M Miller Sch Med, Miami, FL USAHosp Israelita Albert Einstein, Inst Israelita Ensino & Pesquisa Albert Einstein, Albert Einstein Ave,627-701 Bldg A, BR-05652900 Sao Paulo, SP, BrazilUniv Fed Sao Paulo, Div Nephrol, Sao Paulo, SP, BrazilUniv Fed Sao Paulo, Div Nephrol, Sao Paulo, SP, BrazilCNPq: 456959/2013-0FAPESP: 13/19560-6Web of Scienc

    Mesenchymal stem cells as therapeutic candidates for halting the progression of diabetic nephropathy

    Get PDF
    Mesenchymal stem cells (MSCs) possess pleiotropic properties that include immunomodulation, inhibition of apoptosis, fibrosis and oxidative stress, secretion of trophic factors, and enhancement of angiogenesis. These properties provide a broad spectrum for their potential in a wide range of injuries and diseases, including diabetic nephropathy (DN). MSCs are characterized by adherence to plastic, expression of the surface molecules CD73, CD90, and CD105 in the absence of CD34, CD45, HLA-DR, and CD14 or CD11b and CD79a or CD19 surface molecules, and multidifferentiation capacity in vitro. MSCs can be derived from many tissue sources, consistent with their broad, possibly ubiquitous distribution. This article reviews the existing literature and knowledge of MSC therapy in DN, as well as the most appropriate rodent models to verify the therapeutic potential of MSCs in DN setting. Some preclinical relevant studies are highlighted and new perspectives of combined therapies for decreasing DN progression are discussed. Hence, improved comprehension and interpretation of experimental data will accelerate the progress towards clinical trials that should assess the feasibility and safety of this therapeutic approach in humans. Therefore, MSC-based therapies may bring substantial benefit for patients suffering from DN.FAPESP (Fundacao de Amparo a Pesquisa do Estado de Sao Paulo/Sao Paulo Research Foundation) [2013/19560-6]CNPq (Conselho Nacional de Desenvolvimento Cientifico e Tecnologico/National Counsel of Technological and Scientific Development) [456959/2013-0]EFSD (European Foundation for the Study of Diabetes)Sociedade Beneficente Albert Einstein, Albert Einstein Hospital, 05652 São Paulo, SP, Brazil[University of São Paulo, 01246 São Paulo, SP, BrazilFederal University of São Paulo, 04023 São Paulo, SP, BrazilFederal University of São Paulo, 04023 São Paulo, SP, BrazilFAPESP: 2013/19560-6CNPq: 456959/2013-0Web of Scienc

    Mesenchymal Stem Cells as Therapeutic Candidates for Halting the Progression of Diabetic Nephropathy

    Get PDF
    Mesenchymal stem cells (MSCs) possess pleiotropic properties that include immunomodulation, inhibition of apoptosis, fibrosis and oxidative stress, secretion of trophic factors, and enhancement of angiogenesis. These properties provide a broad spectrum for their potential in a wide range of injuries and diseases, including diabetic nephropathy (DN). MSCs are characterized by adherence to plastic, expression of the surface molecules CD73, CD90, and CD105 in the absence of CD34, CD45, HLA-DR, and CD14 or CD11b and CD79a or CD19 surface molecules, and multidifferentiation capacity in vitro. MSCs can be derived from many tissue sources, consistent with their broad, possibly ubiquitous distribution. This article reviews the existing literature and knowledge of MSC therapy in DN, as well as the most appropriate rodent models to verify the therapeutic potential of MSCs in DN setting. Some preclinical relevant studies are highlighted and new perspectives of combined therapies for decreasing DN progression are discussed. Hence, improved comprehension and interpretation of experimental data will accelerate the progress towards clinical trials that should assess the feasibility and safety of this therapeutic approach in humans. Therefore, MSC-based therapies may bring substantial benefit for patients suffering from DN

    Kidney-derived c-kit + progenitor/stem cells contribute to podocyte recovery in a model of acute proteinuria

    No full text
    Kidney-derived c-kit cells exhibit progenitor/stem cell properties and can regenerate epithelial tubular cells following ischemia-reperfusion injury in rats. We therefore investigated whether c-kit progenitor/stem cells contribute to podocyte repair in a rat model of acute proteinuria induced by puromycin aminonucleoside (PAN), the experimental prototype of human minimal change disease and early stages of focal and segmental glomerulosclerosis. We found that c-kit progenitor/stem cells accelerated kidney recovery by improving foot process effacement (foot process width was lower in c-kit group vs saline treated animals, P = 0.03). In particular, these cells engrafted in small quantity into tubules, vessels, and glomeruli, where they occasionally differentiated into podocyte-like cells. This effect was related to an up regulation of α-Actinin-4 and mTORC2-Rictor pathway. Activation of autophagy by c-kit progenitor/stem cells also contributed to kidney regeneration and intracellular homeostasis (autophagosomes and autophagolysosomes number and LC3A/B-I and LC3A/B-II expression were higher in the c-kit group vs saline treated animals, P = 0.0031 and P = 0.0009, respectively). Taken together, our findings suggest that kidney-derived c-kit progenitor/stem cells exert reparative effects on glomerular disease processes through paracrine effects, to a lesser extent differentiation into podocyte-like cells and contribution to maintenance of podocyte cytoskeleton after injury. These findings have clinical implications for cell therapy of glomerular pathobiology

    S-nitrosoglutathione reductase (GSNOR) enhances vasculogenesis by mesenchymal stem cells

    No full text
    Although nitric oxide (NO) signaling promotes differentiation and maturation of endothelial progenitor cells, its role in the differentiation of mesenchymal stem cells (MSCs) into endothelial cells remains controversial. We tested the role of NO signaling in MSCs derived from WT mice and mice homozygous for a deletion of S-nitrosoglutathione reductase (GSNOR(-/-)), a denitrosylase that regulates S-nitrosylation. GSNOR(-/-) MSCs exhibited markedly diminished capacity for vasculogenesis in an in vitro Matrigel tube-forming assay and in vivo relative to WT MSCs. This decrease was associated with down-regulation of the PDGF receptorα (PDGFRα) in GSNOR(-/-) MSCs, a receptor essential for VEGF-A action in MSCs. Pharmacologic inhibition of NO synthase with L-N(G)-nitroarginine methyl ester (L-NAME) and stimulation of growth hormone-releasing hormone receptor (GHRHR) with GHRH agonists augmented VEGF-A production and normalized tube formation in GSNOR(-/-) MSCs, whereas NO donors or PDGFR antagonist reduced tube formation ∼50% by murine and human MSCs. The antagonist also blocked the rescue of tube formation in GSNOR(-/-) MSCs by L-NAME or the GHRH agonists JI-38, MR-409, and MR-356. Therefore, GSNOR(-/-) MSCs have a deficient capacity for endothelial differentiation due to downregulation of PDGFRα related to NO/GSNOR imbalance. These findings unravel important aspects of modulation of MSCs by VEGF-A activation of the PDGFR and illustrate a paradoxical inhibitory role of S-nitrosylation signaling in MSC vasculogenesis. Accordingly, disease states characterized by NO deficiency may trigger MSC-mediated vasculogenesis. These findings have important implications for therapeutic application of GHRH agonists to ischemic disorders

    Charcot Neuroarthropathy After Simultaneous Pancreas-Kidney Transplant

    No full text
    Background. Immunosuppressive regimen is associated with several metabolic adverse effects. Bone loss and fractures are frequent after transplantation and involve multifactorial mechanisms.Methods. A retrospective analysis of 130 patients submitted to simultaneous pancreas-kidney transplantation (SPKT) and an identification of risk factors involved in de novo Charcot neuroarthropathy by multivariate analysis were used; P<0.05 was considered significant.Results. Charcot neuroarthropathy was diagnosed in 4.6% of SPKT recipients during the first year. Cumulative glucocorticoid doses (daily dose plus methylprednisolone pulse) during the first 6 months both adjusted to body weight (978 mg/kg) and not adjusted to body weight were associated with Charcot neuroarthropathy (P=0.001 and P<0.0001, respectively). Age, gender, race, time on dialysis, time of diabetes history, and posttransplantation hyperparathyroidism were not related to Charcot neuroarthropathy after SPKT.Conclusions. Glucocorticoids are the main risk factors for de novo Charcot neuroarthropathy after SPKT. Protocols including glucocorticoid avoidance or minimization should be considered.Universidade Federal de São Paulo, Div Nephrol, BR-04023900 São Paulo, BrazilUniversidade Federal de São Paulo, Div Endocrinol, BR-04023900 São Paulo, BrazilUniversidade Federal de São Paulo, Dept Surg, BR-04023900 São Paulo, BrazilUniversidade Federal de São Paulo, Div Nephrol, BR-04023900 São Paulo, BrazilUniversidade Federal de São Paulo, Div Endocrinol, BR-04023900 São Paulo, BrazilUniversidade Federal de São Paulo, Dept Surg, BR-04023900 São Paulo, BrazilWeb of Scienc
    corecore