19,554 research outputs found

    The complex Sine-Gordon equation as a symmetry flow of the AKNS Hierarchy

    Full text link
    It is shown how the complex sine-Gordon equation arises as a symmetry flow of the AKNS hierarchy. The AKNS hierarchy is extended by the ``negative'' symmetry flows forming the Borel loop algebra. The complex sine-Gordon and the vector Nonlinear Schrodinger equations appear as lowest negative and second positive flows within the extended hierarchy. This is fully analogous to the well-known connection between the sine-Gordon and mKdV equations within the extended mKdV hierarchy. A general formalism for a Toda-like symmetry occupying the ``negative'' sector of sl(N) constrained KP hierarchy and giving rise to the negative Borel sl(N) loop algebra is indicated.Comment: 8 pages, LaTeX, typos corrected, references update

    Equivalence classes for gauge theories

    Get PDF
    In this paper we go deep into the connection between duality and fields redefinition for general bilinear models involving the 1-form gauge field AA. A duality operator is fixed based on "gauge embedding" procedure. Dual models are shown to fit in equivalence classes of models with same fields redefinitions

    Riccati-type equations, generalised WZNW equations, and multidimensional Toda systems

    Full text link
    We associate to an arbitrary Z\mathbb Z-gradation of the Lie algebra of a Lie group a system of Riccati-type first order differential equations. The particular cases under consideration are the ordinary Riccati and the matrix Riccati equations. The multidimensional extension of these equations is given. The generalisation of the associated Redheffer--Reid differential systems appears in a natural way. The connection between the Toda systems and the Riccati-type equations in lower and higher dimensions is established. Within this context the integrability problem for those equations is studied. As an illustration, some examples of the integrable multidimensional Riccati-type equations related to the maximally nonabelian Toda systems are given.Comment: LaTeX2e, 18 page

    Noncommutativity due to spin

    Full text link
    Using the Berezin-Marinov pseudoclassical formulation of spin particle we propose a classical model of spin noncommutativity. In the nonrelativistic case, the Poisson brackets between the coordinates are proportional to the spin angular momentum. The quantization of the model leads to the noncommutativity with mixed spacial and spin degrees of freedom. A modified Pauli equation, describing a spin half particle in an external e.m. field is obtained. We show that nonlocality caused by the spin noncommutativity depends on the spin of the particle; for spin zero, nonlocality does not appear, for spin half, ΔxΔy≥θ2/2\Delta x\Delta y\geq\theta^{2}/2, etc. In the relativistic case the noncommutative Dirac equation was derived. For that we introduce a new star product. The advantage of our model is that in spite of the presence of noncommutativity and nonlocality, it is Lorentz invariant. Also, in the quasiclassical approximation it gives noncommutativity with a nilpotent parameter.Comment: 11 pages, references adda
    • …
    corecore