19,554 research outputs found
The complex Sine-Gordon equation as a symmetry flow of the AKNS Hierarchy
It is shown how the complex sine-Gordon equation arises as a symmetry flow of
the AKNS hierarchy. The AKNS hierarchy is extended by the ``negative'' symmetry
flows forming the Borel loop algebra. The complex sine-Gordon and the vector
Nonlinear Schrodinger equations appear as lowest negative and second positive
flows within the extended hierarchy. This is fully analogous to the well-known
connection between the sine-Gordon and mKdV equations within the extended mKdV
hierarchy.
A general formalism for a Toda-like symmetry occupying the ``negative''
sector of sl(N) constrained KP hierarchy and giving rise to the negative Borel
sl(N) loop algebra is indicated.Comment: 8 pages, LaTeX, typos corrected, references update
Equivalence classes for gauge theories
In this paper we go deep into the connection between duality and fields
redefinition for general bilinear models involving the 1-form gauge field .
A duality operator is fixed based on "gauge embedding" procedure. Dual models
are shown to fit in equivalence classes of models with same fields
redefinitions
Riccati-type equations, generalised WZNW equations, and multidimensional Toda systems
We associate to an arbitrary -gradation of the Lie algebra of a
Lie group a system of Riccati-type first order differential equations. The
particular cases under consideration are the ordinary Riccati and the matrix
Riccati equations. The multidimensional extension of these equations is given.
The generalisation of the associated Redheffer--Reid differential systems
appears in a natural way. The connection between the Toda systems and the
Riccati-type equations in lower and higher dimensions is established. Within
this context the integrability problem for those equations is studied. As an
illustration, some examples of the integrable multidimensional Riccati-type
equations related to the maximally nonabelian Toda systems are given.Comment: LaTeX2e, 18 page
Noncommutativity due to spin
Using the Berezin-Marinov pseudoclassical formulation of spin particle we
propose a classical model of spin noncommutativity. In the nonrelativistic
case, the Poisson brackets between the coordinates are proportional to the spin
angular momentum. The quantization of the model leads to the noncommutativity
with mixed spacial and spin degrees of freedom. A modified Pauli equation,
describing a spin half particle in an external e.m. field is obtained. We show
that nonlocality caused by the spin noncommutativity depends on the spin of the
particle; for spin zero, nonlocality does not appear, for spin half, , etc. In the relativistic case the noncommutative
Dirac equation was derived. For that we introduce a new star product. The
advantage of our model is that in spite of the presence of noncommutativity and
nonlocality, it is Lorentz invariant. Also, in the quasiclassical approximation
it gives noncommutativity with a nilpotent parameter.Comment: 11 pages, references adda
- …