1,234 research outputs found
Hydrodynamic Irreversibility in Particle Suspensions with Non-Uniform Strain
A dynamical phase transition from reversible to irreversible behavior occurs
when particle suspensions are subjected to uniform oscillatory shear, even in
the Stokes flow limit. We consider a more general situation with non-uniform
strain (e.g. oscillatory channel flow), which is observed to exhibit markedly
different dynamics. Self-organization and shear-induced migration only
partially explain the delayed, simultaneous onset of irreversibility across the
channel. The onset of irreversibility is accompanied by long-range correlated
particle motion. This motion leads to particle activity even at the channel
center, where the strain is negligible, and prevents the system from evolving
into a reversible state
Charge migration in organic materials: Can propagating charges affect the key physical quantities controlling their motion?
Charge migration is a ubiquitous phenomenon with profound implications
throughout many areas of chemistry, physics, biology and materials science. The
long-term vision of designing functional materials with tailored molecular
scale properties has triggered an increasing quest to identify prototypical
systems where truly molecular conduction pathways play a fundamental role. Such
pathways can be formed due to the molecular organization of various organic
materials and are widely used to discuss electronic properties at the nanometer
scale. Here, we present a computational methodology to study charge propagation
in organic molecular stacks at nano and sub-nanoscales and exploit this
methodology to demonstrate that moving charge carriers strongly affect the
values of the physical quantities controlling their motion. The approach is
also expected to find broad application in the field of charge migration in
soft matter systems.Comment: 18 pages, 6 figures, accepted for publication in the Israel Journal
of Chemistr
Generating Information-Diverse Microwave Speckle Patterns Inside a Room at a Single Frequency With a Dynamic Metasurface Aperture
We demonstrate that dynamic metasurface apertures (DMAs) are capable of generating a multitude of highly uncorrelated speckle patterns in a typical residential environment at a single frequency. We use a DMA implemented as an electrically-large cavity excited by a single port and loaded with many individually-addressable tunable metamaterial radiators. We placed such a DMA in one corner of a plywood-walled L-shape room transmitting microwave signals at 19 GHz as we changed the tuning states of the metamaterial radiators. In another corner, in the non-line-of-sight of the DMA, we conducted a scan of the field generated by the DMA. For comparison, we also performed a similar test where the DMA was replaced by a simple dipole antenna with fixed pattern but generating a signal that spanned 19-24 GHz. Using singular value decomposition of the scanned data, we demonstrate that the DMA can generate a multitude of highly uncorrelated speckle patterns at a single frequency. In contrast, a dipole antenna with a fixed pattern can only generate such a highly uncorrelated set of patterns when operating over a large bandwidth. The experimental results of this paper suggest that DMAs can be used to capture a diversity of information at a single frequency which can be used for single frequency computational imaging systems, NLOS motion detection, gesture recognition systems, and more
Oscillatory Flows Induced by Microorganisms Swimming in Two-dimensions
We present the first time-resolved measurements of the oscillatory velocity
field induced by swimming unicellular microorganisms. Confinement of the green
alga C. reinhardtii in stabilized thin liquid films allows simultaneous
tracking of cells and tracer particles. The measured velocity field reveals
complex time-dependent flow structures, and scales inversely with distance. The
instantaneous mechanical power generated by the cells is measured from the
velocity fields and peaks at 15 fW. The dissipation per cycle is more than four
times what steady swimming would require.Comment: 4 pages, 4 figure
Temporal Modulation of the Control Parameter in Electroconvection in the Nematic Liquid Crystal I52
I report on the effects of a periodic modulation of the control parameter on
electroconvection in the nematic liquid crystal I52. Without modulation, the
primary bifurcation from the uniform state is a direct transition to a state of
spatiotemporal chaos. This state is the result of the interaction of four,
degenerate traveling modes: right and left zig and zag rolls. Periodic
modulations of the driving voltage at approximately twice the traveling
frequency are used. For a large enough modulation amplitude, standing waves
that consist of only zig or zag rolls are stabilized. The standing waves
exhibit regular behavior in space and time. Therefore, modulation of the
control parameter represents a method of eliminating spatiotemporal chaos. As
the modulation frequency is varied away from twice the traveling frequency,
standing waves that are a superposition of zig and zag rolls, i.e. standing
rectangles, are observed. These results are compared with existing predictions
based on coupled complex Ginzburg-Landau equations
- …