26,302 research outputs found
Dark states of dressed Bose-Einstein condensates
We combine the ideas of dressed Bose-Einstein condensates, where an
intracavity optical field allows one to design coupled, multicomponent
condensates, and of dark states of quantum systems, to generate a full quantum
entanglement between two matter waves and two optical waves. While the matter
waves are macroscopically populated, the two optical modes share a single
photon. As such, this system offers a way to influence the behaviour of a
macroscopic quantum system via a microscopic ``knob''.Comment: 6 pages, no figur
Collective chemotactic dynamics in the presence of self-generated fluid flows
In micro-swimmer suspensions locomotion necessarily generates fluid motion,
and it is known that such flows can lead to collective behavior from unbiased
swimming. We examine the complementary problem of how chemotaxis is affected by
self-generated flows. A kinetic theory coupling run-and-tumble chemotaxis to
the flows of collective swimming shows separate branches of chemotactic and
hydrodynamic instabilities for isotropic suspensions, the first driving
aggregation, the second producing increased orientational order in suspensions
of "pushers" and maximal disorder in suspensions of "pullers". Nonlinear
simulations show that hydrodynamic interactions can limit and modify
chemotactically-driven aggregation dynamics. In puller suspensions the dynamics
form aggregates that are mutually-repelling due to the non-trivial flows. In
pusher suspensions chemotactic aggregation can lead to destabilizing flows that
fragment the regions of aggregation.Comment: 4 page
Atom holography
We study the conditions under which atomic condensates can be used as a
recording media and then suggest a reading scheme which allows to reconstruct
an object with atomic reading beam. We show that good recording can be achieved
for flat condensate profiles and for negative detunings between atomic Bohr
frequency and optical field frequency. The resolution of recording dramatically
depends on the relation between the healing length of the condensate and the
spatial frequency contents of the optical fields involved.Comment: 8 pages, 5 figures, Late
Nonlinear instability in flagellar dynamics: a notel modulation mechanism in sperm migration
Throughout biology, cells and organisms use flagella and cilia to propel fluid and achieve motility. The beating of these organelles, and the corresponding ability to sense, respond to and modulate this beat is central to many processes in health and disease. While the mechanics of flagellum–fluid interaction has been the subject of extensive mathematical studies, these models have been restricted to being geometrically linear or weakly nonlinear, despite the high curvatures observed physiologically. We study the effect of geometrical nonlinearity, focusing on the spermatozoon flagellum. For a wide range of physiologically relevant parameters, the nonlinear model predicts that flagellar compression by the internal forces initiates an effective buckling behaviour, leading to a symmetry-breaking bifurcation that causes profound and complicated changes in the waveform and swimming trajectory, as well as the breakdown of the linear theory. The emergent waveform also induces curved swimming in an otherwise symmetric system, with the swimming trajectory being sensitive to head shape—no signalling or asymmetric forces are required. We conclude that nonlinear models are essential in understanding the flagellar waveform in migratory human sperm; these models will also be invaluable in understanding motile flagella and cilia in other systems
Mixing by Swimming Algae
In this fluid dynamics video, we demonstrate the microscale mixing
enhancement of passive tracer particles in suspensions of swimming microalgae,
Chlamydomonas reinhardtii. These biflagellated, single-celled eukaryotes (10
micron diameter) swim with a "breaststroke" pulling motion of their flagella at
speeds of about 100 microns/s and exhibit heterogeneous trajectory shapes.
Fluorescent tracer particles (2 micron diameter) allowed us to quantify the
enhanced mixing caused by the swimmers, which is relevant to suspension feeding
and biogenic mixing. Without swimmers present, tracer particles diffuse slowly
due solely to Brownian motion. As the swimmer concentration is increased, the
probability density functions (PDFs) of tracer displacements develop strong
exponential tails, and the Gaussian core broadens. High-speed imaging (500 Hz)
of tracer-swimmer interactions demonstrates the importance of flagellar beating
in creating oscillatory flows that exceed Brownian motion out to about 5 cell
radii from the swimmers. Finally, we also show evidence of possible cooperative
motion and synchronization between swimming algal cells.Comment: 1 page, APS-DFD 2009 Gallery of Fluid Motio
Failure of the work-Hamiltonian connection for free energy calculations
Extensions of statistical mechanics are routinely being used to infer free
energies from the work performed over single-molecule nonequilibrium
trajectories. A key element of this approach is the ubiquitous expression
dW/dt=\partial H(x,t)/ \partial t which connects the microscopic work W
performed by a time-dependent force on the coordinate x with the corresponding
Hamiltonian H(x,t) at time t. Here we show that this connection, as pivotal as
it is, cannot be used to estimate free energy changes. We discuss the
implications of this result for single-molecule experiments and atomistic
molecular simulations and point out possible avenues to overcome these
limitations
Trajectories and Particle Creation and Annihilation in Quantum Field Theory
We develop a theory based on Bohmian mechanics in which particle world lines
can begin and end. Such a theory provides a realist description of creation and
annihilation events and thus a further step towards a "beable-based"
formulation of quantum field theory, as opposed to the usual "observable-based"
formulation which is plagued by the conceptual difficulties--like the
measurement problem--of quantum mechanics.Comment: 11 pages LaTeX, no figures; v2: references added and update
Static deformation of heavy spring due to gravity and centrifugal force
The static equilibrium deformation of a heavy spring due to its own weight is
calculated for two cases. First for a spring hanging in a constant
gravitational field, then for a spring which is at rest in a rotating system
where it is stretched by the centrifugal force. Two different models are
considered. First a discrete model assuming a finite number of point masses
connected by springs of negligible weight. Then the continuum limit of this
model. In the second case the differential equation for the deformation is
obtained by demanding that the potential energy is minimized. In this way a
simple application of the variational calculus is obtained.Comment: 11 pages, 2 figure
Control of Integrable Hamiltonian Systems and Degenerate Bifurcations
We discuss control of low-dimensional systems which, when uncontrolled, are
integrable in the Hamiltonian sense. The controller targets an exact solution
of the system in a region where the uncontrolled dynamics has invariant tori.
Both dissipative and conservative controllers are considered. We show that the
shear flow structure of the undriven system causes a Takens-Bogdanov
birfurcation to occur when control is applied. This implies extreme noise
sensitivity. We then consider an example of these results using the driven
nonlinear Schrodinger equation.Comment: 25 pages, 11 figures, resubmitted to Physical Review E March 2004
(originally submitted June 2003), added content and reference
Theory of four-wave mixing of matter waves from a Bose-Einstein condensate
A recent experiment [Deng et al., Nature 398, 218(1999)] demonstrated
four-wave mixing of matter wavepackets created from a Bose-Einstein condensate.
The experiment utilized light pulses to create two high-momentum wavepackets
via Bragg diffraction from a stationary Bose-Einstein condensate. The
high-momentum components and the initial low momentum condensate interact to
form a new momentum component due to the nonlinear self-interaction of the
bosonic atoms. We develop a three-dimensional quantum mechanical description,
based on the slowly-varying-envelope approximation, for four-wave mixing in
Bose-Einstein condensates using the time-dependent Gross-Pitaevskii equation.
We apply this description to describe the experimental observations and to make
predictions. We examine the role of phase-modulation, momentum and energy
conservation (i.e., phase-matching), and particle number conservation in
four-wave mixing of matter waves, and develop simple models for understanding
our numerical results.Comment: 18 pages Revtex preprint form, 13 eps figure
- …