16,103 research outputs found

    Primary-Filling e/3 Quasiparticle Interferometer

    Full text link
    We report experimental realization of a quasiparticle interferometer where the entire system is in 1/3 primary fractional quantum Hall state. The interferometer consists of chiral edge channels coupled by quantum-coherent tunneling in two constrictions, thus enclosing an Aharonov-Bohm area. We observe magnetic flux and charge periods h/e and e/3, equivalent to creation of one quasielectron in the island. Quantum theory predicts a 3h/e flux period for charge e/3, integer statistics particles. Accordingly, the observed periods demonstrate the anyonic statistics of Laughlin quasiparticles

    Color Magnetic Corrections to Quark Model Valence Distributions

    Full text link
    We calculate order αs\alpha_s color magnetic corrections to the valence quark distributions of the proton using the Los Alamos Model Potential wavefunctions. The spin-spin interaction breaks the model SU(4) symmetry, providing a natural mechanism for the difference between the up and down distributions. For a value of αs\alpha_s sufficient to produce the N−ΔN-\Delta mass splitting, we find up and down quark distributions in reasonable agreement with experiment.Comment: 25 Pages, LA-UR-93-132

    Electron interferometry in quantum Hall regime: Aharonov-Bohm effect of interacting electrons

    Full text link
    An apparent h/fe Aharonov-Bohm flux period, where f is an integer, has been reported in coherent quantum Hall devices. Such sub-period is not expected for non-interacting electrons and thus is thought to result from interelectron Coulomb interaction. Here we report experiments in a Fabry-Perot interferometer comprised of two wide constrictions enclosing an electron island. By carefully tuning the constriction front gates, we find a regime where interference oscillations with period h/2e persist throughout the transition between the integer quantum Hall plateaus 2 and 3, including half-filling. In a large quantum Hall sample, a transition between integer plateaus occurs near half-filling, where the bulk of the sample becomes delocalized and thus dissipative bulk current flows between the counterpropagating edges ("backscattering"). In a quantum Hall constriction, where conductance is due to electron tunneling, a transition between forward- and back-scattering is expected near the half-filling. In our experiment, neither period nor amplitude of the oscillations show a discontinuity at half-filling, indicating that only one interference path exists throughout the transition. We also present experiments and an analysis of the front-gate dependence of the phase of the oscillations. The results point to a single physical mechanism of the observed conductance oscillations: Aharonov-Bohm interference of interacting electrons in quantum Hall regime.Comment: 10 pages, 4 Fig

    Characterizing the Hofstadter butterfly's outline with Chern numbers

    Full text link
    In this work, we report original properties inherent to independent particles subjected to a magnetic field by emphasizing the existence of regular structures in the energy spectrum's outline. We show that this fractal curve, the well-known Hofstadter butterfly's outline, is associated to a specific sequence of Chern numbers that correspond to the quantized transverse conductivity. Indeed the topological invariant that characterizes the fundamental energy band depicts successive stairways as the magnetic flux varies. Moreover each stairway is shown to be labeled by another Chern number which measures the charge transported under displacement of the periodic potential. We put forward the universal character of these properties by comparing the results obtained for the square and the honeycomb geometries.Comment: Accepted for publication in J. Phys. B (Jan 2009

    Realization of a Laughlin quasiparticle interferometer: Observation of fractional statistics

    Full text link
    In two dimensions, the laws of physics permit existence of anyons, particles with fractional statistics which is neither Fermi nor Bose. That is, upon exchange of two such particles, the quantum state of a system acquires a phase which is neither 0 nor \pi, but can be any value. The elementary excitations (Laughlin quasiparticles) of a fractional quantum Hall fluid have fractional electric charge and are expected to obey fractional statistics. Here we report experimental realization of a novel Laughlin quasiparticle interferometer, where quasiparticles of the 1/3 fluid execute a closed path around an island of the 2/5 fluid and thus acquire statistical phase. Interference fringes are observed as conductance oscillations as a function of magnetic flux, similar to the Aharonov-Bohm effect. We observe the interference shift by one fringe upon introduction of five magnetic flux quanta (5h/e) into the island. The corresponding 2e charge period is confirmed directly in calibrated gate experiments. These results constitute direct observation of fractional statistics of Laughlin quasiparticles.Comment: manuscript of the long version published in Phys. Rev.

    MoodBar: Increasing new user retention in Wikipedia through lightweight socialization

    Full text link
    Socialization in online communities allows existing members to welcome and recruit newcomers, introduce them to community norms and practices, and sustain their early participation. However, socializing newcomers does not come for free: in large communities, socialization can result in a significant workload for mentors and is hard to scale. In this study we present results from an experiment that measured the effect of a lightweight socialization tool on the activity and retention of newly registered users attempting to edit for the first time Wikipedia. Wikipedia is struggling with the retention of newcomers and our results indicate that a mechanism to elicit lightweight feedback and to provide early mentoring to newcomers improves their chances of becoming long-term contributors.Comment: 9 pages, 5 figures, accepted for presentation at CSCW'1
    • …
    corecore