1,096 research outputs found
Imaging Coulomb Islands in a Quantum Hall Interferometer
In the Quantum Hall regime, near integer filling factors, electrons should
only be transmitted through spatially-separated edge states. However, in
mesoscopic systems, electronic transmission turns out to be more complex,
giving rise to a large spectrum of magnetoresistance oscillations. To explain
these observations, recent models put forward that, as edge states come close
to each other, electrons can hop between counterpropagating edge channels, or
tunnel through Coulomb islands. Here, we use scanning gate microscopy to
demonstrate the presence of quantum Hall Coulomb islands, and reveal the
spatial structure of transport inside a quantum Hall interferometer. Electron
islands locations are found by modulating the tunneling between edge states and
confined electron orbits. Tuning the magnetic field, we unveil a continuous
evolution of active electron islands. This allows to decrypt the complexity of
high magnetic field magnetoresistance oscillations, and opens the way to
further local scale manipulations of quantum Hall localized states
Serum Ethanol Levels after Alcohol Sclerotherapy of Arteriovenous Malformations
We analyzed the effects of several factors on the serum ethanol levels after alcohol sclerotherapy in the arteriovenous malformations (AVMs) retrospectively. Blood ethanol level, amounts of given alcohol, location of lesions, methods of flow control, and Doppler resistive index (RI) were analyzed. The results of linear regression analysis showed that the amount of alcohol administered was the predictor of serum ethanol level (r2=0.75, p<0.001). The average amount of injected alcohol was 0.89 mL/kg in the patients with the serum levels above the legal intoxication level (>80 mg/dL). Location of the lesions was not related with the serum ethanol level (p=0.643), and other variables such as forms of flow control and RI were not related to the serum ethanol level after controlling for injected amounts of alcohol (analysis of covariance). It is recommended to keep an eye on the possibility of intoxication when using the amounts of alcohol exceeding 0.89 mL/kg in the sclerotherapy of AVMs
Weak Localization Effect in Superconductors by Radiation Damage
Large reductions of the superconducting transition temperature and
the accompanying loss of the thermal electrical resistivity (electron-phonon
interaction) due to radiation damage have been observed for several A15
compounds, Chevrel phase and Ternary superconductors, and in
the high fluence regime. We examine these behaviors based on the recent theory
of weak localization effect in superconductors. We find a good fitting to the
experimental data. In particular, weak localization correction to the
phonon-mediated interaction is derived from the density correlation function.
It is shown that weak localization has a strong influence on both the
phonon-mediated interaction and the electron-phonon interaction, which leads to
the universal correlation of and resistance ratio.Comment: 16 pages plus 3 figures, revtex, 76 references, For more information,
Plesse see http://www.fen.bilkent.edu.tr/~yjki
The socioeconomic burden of SLE.
Systemic lupus erythematosus (SLE) is a chronic, relapsing-remitting, multisystemic autoimmune inflammatory disorder that predominantly affects women of childbearing age. Much has been written about the clinical course and long-term damage associated with SLE, as well as the reduced life expectancy of patients with this condition. In addition, studies have emphasized the socioeconomic and psychosocial impact of SLE, although the monetary cost of caring for patients with the disorder has only been evaluated in a modest number of studies and a restricted number of countries. SLE has a negative impact on quality of life and is associated with high health-care costs and significant productivity loss. Factors associated with increased cost of SLE include long disease duration, high disease activity and damage, poor physical and mental health, and high education and employment levels. Similarly, high disease activity and damage, poor physical health, certain disease manifestations, as well as poor family and social support are associated with poor health-related quality of life outcomes. SLE incurs a great burden on both the patient and society. Long-term prospective studies should be encouraged to monitor the costs and psychosocial impact of this condition, and to better understand the factors that are associated with poor outcomes.postprin
Causal hierarchy within the thalamo-cortical network in spike and wave discharges
Background: Generalised spike wave (GSW) discharges are the electroencephalographic (EEG) hallmark of absence seizures, clinically characterised by a transitory interruption of ongoing activities and impaired consciousness, occurring during states of reduced awareness. Several theories have been proposed to explain the pathophysiology of GSW discharges and the role of thalamus and cortex as generators. In this work we extend the existing theories by hypothesizing a role for the precuneus, a brain region neglected in previous works on GSW generation but already known to be linked to consciousness and awareness. We analysed fMRI data using dynamic causal modelling (DCM) to investigate the effective connectivity between precuneus, thalamus and prefrontal cortex in patients with GSW discharges. Methodology and Principal Findings: We analysed fMRI data from seven patients affected by Idiopathic Generalized Epilepsy (IGE) with frequent GSW discharges and significant GSW-correlated haemodynamic signal changes in the thalamus, the prefrontal cortex and the precuneus. Using DCM we assessed their effective connectivity, i.e. which region drives another region. Three dynamic causal models were constructed: GSW was modelled as autonomous input to the thalamus (model A), ventromedial prefrontal cortex (model B), and precuneus (model C). Bayesian model comparison revealed Model C (GSW as autonomous input to precuneus), to be the best in 5 patients while model A prevailed in two cases. At the group level model C dominated and at the population-level the p value of model C was ∼1. Conclusion: Our results provide strong evidence that activity in the precuneus gates GSW discharges in the thalamo-(fronto) cortical network. This study is the first demonstration of a causal link between haemodynamic changes in the precuneus - an index of awareness - and the occurrence of pathological discharges in epilepsy. © 2009 Vaudano et al
Composite magnetostrictive materials for advanced automotive magnetomechanical sensors
In this paper we present the development of a composite magnetostrictive material for automotive applications. The material is based on cobaltferrite,CoO⋅Fe2O3, and contains a small fraction of metallic matrix phase that serves both as a liquid-phasesintering aid during processing and enhances the mechanical properties over those of a simple sinteredferrite ceramic. In addition the metal matrix makes it possible to braze the material, making the assembly of a sensor relatively simple. The material exhibits good sensitivity and should have high corrosion resistance, while at the same time it is low in cost
Simulating complex social behaviour with the genetic action tree kernel
The concept of genetic action trees combines action trees with genetic algorithms. In this paper, we create a multi-agent simulation on the base of this concept and provide the interested reader with a software package to apply genetic action trees in a multi-agent simulation to simulate complex social behaviour. An example model is introduced to conduct a feasibility study with the described method. We find that our library can be used to simulate the behaviour of agents in a complex setting and observe a convergence to a global optimum in spite of the absence of stable states
A Case of Infantile Alexander Disease Accompanied by Infantile Spasms Diagnosed by DNA Analysis
Alexander disease (AD) is a rare leukodystrophy of the central nervous system of unknown etiology. AD is characterized by progressive failure of central myelination and the accumulation of Rosenthal fibers in astrocytes, and is inevitably lethal in nature. Symptomatically, AD is associated with leukoencephalopathy with macrocephaly, seizures, and psychomotor retardation in infants, and usually leads to death within the first decade. Its characteristic magnetic resonance imaging (MRI) findings have been described as demyelination predominantly in the frontal lobe. Moreover, dominant mutations in the GFAP gene, coding for glial fibrillary acidic protein (GFAP), a principal astrocytic intermediate filament protein, have been shown to lead to AD. The disease can now be detected by genetic diagnosis. We report the Korean case of an 8-month-old male patient with AD. He was clinically characterized due to the presence of psychomotor retardation, megalencephaly, spasticity, and recurrent seizures including infantile spasms which is a remarkable presentation. Demyelination in the frontal lobe and in a portion of the temporal lobe was demonstrated by brain MRI. Moreover, DNA analysis of peripheral blood showed the presence of a R239L mutation in the GFAP gene, involving the replacement of guanine with thymine
Seasonal changes in patterns of gene expression in avian song control brain regions.
This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.Photoperiod and hormonal cues drive dramatic seasonal changes in structure and function of the avian song control system. Little is known, however, about the patterns of gene expression associated with seasonal changes. Here we address this issue by altering the hormonal and photoperiodic conditions in seasonally-breeding Gambel's white-crowned sparrows and extracting RNA from the telencephalic song control nuclei HVC and RA across multiple time points that capture different stages of growth and regression. We chose HVC and RA because while both nuclei change in volume across seasons, the cellular mechanisms underlying these changes differ. We thus hypothesized that different genes would be expressed between HVC and RA. We tested this by using the extracted RNA to perform a cDNA microarray hybridization developed by the SoNG initiative. We then validated these results using qRT-PCR. We found that 363 genes varied by more than 1.5 fold (>log(2) 0.585) in expression in HVC and/or RA. Supporting our hypothesis, only 59 of these 363 genes were found to vary in both nuclei, while 132 gene expression changes were HVC specific and 172 were RA specific. We then assigned many of these genes to functional categories relevant to the different mechanisms underlying seasonal change in HVC and RA, including neurogenesis, apoptosis, cell growth, dendrite arborization and axonal growth, angiogenesis, endocrinology, growth factors, and electrophysiology. This revealed categorical differences in the kinds of genes regulated in HVC and RA. These results show that different molecular programs underlie seasonal changes in HVC and RA, and that gene expression is time specific across different reproductive conditions. Our results provide insights into the complex molecular pathways that underlie adult neural plasticity
- …