8 research outputs found

    Local chromosome context is a major determinant of crossover pathway biochemistry during budding yeast meiosis

    Get PDF
    The budding yeast genome contains regions where meiotic recombination initiates more frequently than in others. This pattern parallels enrichment for the meiotic chromosome axis proteins Hop1 and Red1. These proteins are important for Spo11-catalyzed double strand break formation; their contribution to crossover recombination remains undefined. Using the sequencespecific VMA1-derived endonuclease (VDE) to initiate recombination in meiosis, we show that chromosome structure influences the choice of proteins that resolve recombination intermediates to form crossovers. At a Hop1-enriched locus, most VDE-initiated crossovers, like most Spo11- initiated crossovers, required the meiosis-specific MutLg resolvase. In contrast, at a locus with lower Hop1 occupancy, most VDE-initiated crossovers were MutLg-independent. In pch2 mutants, the two loci displayed similar Hop1 occupancy levels, and VDE-induced crossovers were similarly MutLg-dependent. We suggest that meiotic and mitotic recombination pathways coexist within meiotic cells, and that features of meiotic chromosome structure determine whether one or the other predominates in different regions

    'Sex' in the cancer cell

    Get PDF

    Evidence that MEK1 positively promotes interhomologue double-strand break repair

    Get PDF
    During meiosis there is an imperative to create sufficient crossovers for homologue segregation. This can be achieved during repair of programmed DNA double-strand breaks (DSBs), which are biased towards using a homologue rather than sister chromatid as a repair template. Various proteins contribute to this bias, one of which is a meiosis specific kinase Mek1. It has been proposed that Mek1 establishes the bias by creating a barrier to sister chromatid repair, as distinct from enforcing strand invasion with the homologue. We looked for evidence that Mek1 positively stimulates strand invasion of the homologue. This was done by analysing repair of DSBs induced by the VMA1- derived endonuclease (VDE) and flanked by directly repeated sequences that can be used for intrachromatid single-strand annealing (SSA). SSA competes with interhomologue strand inva- sion significantly more successfully when Mek1 function is lost. We suggest the increase in intrachromosomal SSA reflects an opportunistic default repair pathway due to loss of a MEK1 stimulated bias for strand invasion of the homologous chromosome. Making use of an inhibitor sensitive mek1-as1 allele, we found that Mek1 function influences the repair pathway throughout the first 4-5 h of meiosis. Perhaps reflecting a particular need to create bias for successful interhomologue events before chromosome pairing is complete. © The Author(s) 2010. Published by Oxford University Pres

    Methyl methanesulfonate (MMS) produces heat-labile DNA damage but no detectable in vivo DNA double-strand breaks

    Get PDF
    Homologous recombination (HR) deficient cells are sensitive to methyl methanesulfonate (MMS). HR is usually involved in the repair of DNA double-strand breaks (DSBs) in Saccharomyces cerevisiae implying that MMS somehow induces DSBs in vivo. Indeed there is evidence, based on pulsed-field gel electrophoresis (PFGE), that MMS causes DNA fragmentation. However, the mechanism through which MMS induces DSBs has not been demonstrated. Here, we show that DNA fragmentation following MMS treatment, and detected by PFGE is not the consequence of production of cellular DSBs. Instead, DSBs seen following MMS treatment are produced during sample preparation where heat-labile methylated DNA is converted into DSBs. Furthermore, we show that the repair of MMS-induced heat-labile damage requires the base excision repair protein XRCC1, and is independent of HR in both S.cerevisiae and mammalian cells. We speculate that the reason for recombination-deficient cells being sensitive to MMS is due to the role of HR in repair of MMS-induced stalled replication forks, rather than for repair of cellular DSBs or heat-labile damage
    corecore