17,844 research outputs found
Properties of Nucleon Resonances by means of a Genetic Algorithm
We present an optimization scheme that employs a Genetic Algorithm (GA) to
determine the properties of low-lying nucleon excitations within a realistic
photo-pion production model based upon an effective Lagrangian. We show that
with this modern optimization technique it is possible to reliably assess the
parameters of the resonances and the associated error bars as well as to
identify weaknesses in the models. To illustrate the problems the optimization
process may encounter, we provide results obtained for the nucleon resonances
(1230) and (1700). The former can be easily isolated and thus
has been studied in depth, while the latter is not as well known
experimentally.Comment: 12 pages, 10 figures, 3 tables. Minor correction
Hall effect encoding of brushless dc motors
Encoding mechanism integral to the motor and using the permanent magnets embedded in the rotor eliminates the need for external devices to encode information relating the position and velocity of the rotating member
Canonical General Relativity on a Null Surface with Coordinate and Gauge Fixing
We use the canonical formalism developed together with David Robinson to st=
udy the Einstein equations on a null surface. Coordinate and gauge conditions =
are introduced to fix the triad and the coordinates on the null surface. Toget=
her with the previously found constraints, these form a sufficient number of
second class constraints so that the phase space is reduced to one pair of
canonically conjugate variables: \Ac_2\and\Sc^2. The formalism is related to
both the Bondi-Sachs and the Newman-Penrose methods of studying the
gravitational field at null infinity. Asymptotic solutions in the vicinity of
null infinity which exclude logarithmic behavior require the connection to fall
off like after the Minkowski limit. This, of course, gives the previous
results of Bondi-Sachs and Newman-Penrose. Introducing terms which fall off
more slowly leads to logarithmic behavior which leaves null infinity intact,
allows for meaningful gravitational radiation, but the peeling theorem does not
extend to in the terminology of Newman-Penrose. The conclusions are in
agreement with those of Chrusciel, MacCallum, and Singleton. This work was
begun as a preliminary study of a reduced phase space for quantization of
general relativity.Comment: magnification set; pagination improved; 20 pages, plain te
Q^2 Evolution of the Neutron Spin Structure Moments using a ^3He Target
We have measured the spin structure functions g_1 and g_2 of ^3He in a double-spin experiment by inclusively scattering polarized electrons at energies ranging from 0.862 to 5.058 GeV off a polarized ^3He target at a 15.5° scattering angle. Excitation energies covered the resonance and the onset of the deep inelastic regions. We have determined for the first time the Q^2 evolution of Γ_1(Q^2)=∫_0^1g_1(x,Q^2)dx, Γ_2(Q^2)=∫_0^1g_2(x,Q^2)dx, and d_2(Q^2)=∫_0^1x^2[2g_1(x,Q^2)+3g_2(x,Q^2)]dx for the neutron in the range 0.1 ≤ Q^2 ≤0.9  GeV^2 with good precision. Γ_1(Q^2) displays a smooth variation from high to low Q^2. The Burkhardt-Cottingham sum rule holds within uncertainties and d_2 is nonzero over the measured range
Evidence of Skyrmion excitations about in n-Modulation Doped Single Quantum Wells by Inter-band Optical Transmission
We observe a dramatic reduction in the degree of spin-polarization of a
two-dimensional electron gas in a magnetic field when the Fermi energy moves
off the mid-point of the spin-gap of the lowest Landau level, . This
rapid decay of spin alignment to an unpolarized state occurs over small changes
to both higher and lower magnetic field. The degree of electron spin
polarization as a function of is measured through the magneto-absorption
spectra which distinguish the occupancy of the two electron spin states. The
data provide experimental evidence for the presence of Skyrmion excitations
where exchange energy dominates Zeeman energy in the integer quantum Hall
regime at
Q^2 Evolution of the Generalized Gerasimov-Drell-Hearn Integral for the Neutron using a ^3He Target
We present data on the inclusive scattering of polarized electrons from a polarized ^3He target at energies from 0.862 to 5.06 GeV, obtained at a scattering angle of 15.5°. Our data include measurements from the quasielastic peak, through the nucleon resonance region, and beyond, and were used to determine the virtual photon cross-section difference σ_(1/2)-σ_(3/2). We extract the extended Gerasimov-Drell-Hearn integral for the neutron in the range of four-momentum transfer squared Q^2 of 0.1–0.9   GeV^2
Gravitational waves from binary systems in circular orbits: Convergence of a dressed multipole truncation
The gravitational radiation originating from a compact binary system in
circular orbit is usually expressed as an infinite sum over radiative multipole
moments. In a slow-motion approximation, each multipole moment is then
expressed as a post-Newtonian expansion in powers of v/c, the ratio of the
orbital velocity to the speed of light. The bare multipole truncation of the
radiation consists in keeping only the leading-order term in the post-Newtonian
expansion of each moment, but summing over all the multipole moments. In the
case of binary systems with small mass ratios, the bare multipole series was
shown in a previous paper to converge for all values v/c < 2/e, where e is the
base of natural logarithms. In this paper, we extend the analysis to a dressed
multipole truncation of the radiation, in which the leading-order moments are
corrected with terms of relative order (v/c)^2 and (v/c)^3. We find that the
dressed multipole series converges also for all values v/c < 2/e, and that it
coincides (within 1%) with the numerically ``exact'' results for v/c < 0.2.Comment: 9 pages, ReVTeX, 1 postscript figur
Suppression of geometrical barrier in crystals by Josephson vortex stacks
Differential magneto-optics are used to study the effect of dc in-plane
magnetic field on hysteretic behavior due to geometrical barriers in
crystals. In absence of in-plane field a vortex
dome is visualized in the sample center surrounded by barrier-dominated
flux-free regions. With in-plane field, stacks of Josephson vortices form
vortex chains which are surprisingly found to protrude out of the dome into the
vortex-free regions. The chains are imaged to extend up to the sample edges,
thus providing easy channels for vortex entry and for drain of the dome through
geometrical barrier, suppressing the magnetic hysteresis. Reduction of the
vortex energy due to crossing with Josephson vortices is evaluated to be about
two orders of magnitude too small to account for the formation of the
protruding chains. We present a model and numerical calculations that
qualitatively describe the observed phenomena by taking into account the
demagnetization effects in which flux expulsion from the pristine regions
results in vortex focusing and in the chain protrusion. Comparative
measurements on a sample with narrow etched grooves provide further support to
the proposed model.Comment: 12 figures (low res.) Higher resolution figures are available at the
Phys Rev B version. Typos correcte
Study of fault-tolerant software technology
Presented is an overview of the current state of the art of fault-tolerant software and an analysis of quantitative techniques and models developed to assess its impact. It examines research efforts as well as experience gained from commercial application of these techniques. The paper also addresses the computer architecture and design implications on hardware, operating systems and programming languages (including Ada) of using fault-tolerant software in real-time aerospace applications. It concludes that fault-tolerant software has progressed beyond the pure research state. The paper also finds that, although not perfectly matched, newer architectural and language capabilities provide many of the notations and functions needed to effectively and efficiently implement software fault-tolerance
- …