26,555 research outputs found

    Multiobjective analysis for the design and control of an electromagnetic valve actuator

    Get PDF
    The electromagnetic valve actuator can deliver much improved fuel efficiency and reduced emissions in spark ignition (SI) engines owing to the potential for variable valve timing when compared with cam-operated, or conventional, variable valve strategies. The possibility exists to reduce pumping losses by throttle-free operation, along with closed-valve engine braking. However, further development is required to make the technology suitable for accept- ance into the mass production market. This paper investigates the application of multiobjective optimization techniques to the conflicting objective functions inherent in the operation of such a device. The techniques are utilized to derive the optimal force–displacement characteristic for the solenoid actuator, along with its controllability and dynamic/steady state performance

    On the Nature and Location of the Microlenses

    Get PDF
    This paper uses the caustic crossing events in the microlens data sets to explore the nature and location of the lenses. We conclude that the large majority of lenses, whether they are luminous or dark, are likely to be binaries. Further, we demonstrate that blending is an important feature of all the data sets. An additional interpretation suggested by the data, that the caustic crossing events along the directions to the Magellanic Clouds are due to lenses located in the Clouds, implies that most of the LMC/SMC events to date are due to lenses in the Magellanic Clouds. All of these conclusions can be tested. If they are correct, a large fraction of lenses along the direction to the LMC may be ordinary stellar binary systems, just as are the majority of the lenses along the direction to the Bulge. Thus, a better understanding of the larger-than-anticipated value derived for the Bulge optical depth may allow us to better interpret the large value derived for the optical depth to the LMC. Indeed, binarity and blending in the data sets may illuminate connections among several other puzzles: the dearth of binary-source light curves, the dearth of non-caustic-crossing perturbed binary-lens events, and the dearth of obviously blended point-lens events.Comment: 15 pages, 2 figures. Submitted to the Astrophysical Journal Letters, 4 January 199

    Lunar contour mapping system /lucom/ final report, 5 aug. 1964 - 18 mar. 1965

    Get PDF
    Radar sensor system for acquisition of lunar surface data - Lunar contour mapping syste

    Approximating the partition function of the ferromagnetic Potts model

    Full text link
    We provide evidence that it is computationally difficult to approximate the partition function of the ferromagnetic q-state Potts model when q>2. Specifically we show that the partition function is hard for the complexity class #RHPi_1 under approximation-preserving reducibility. Thus, it is as hard to approximate the partition function as it is to find approximate solutions to a wide range of counting problems, including that of determining the number of independent sets in a bipartite graph. Our proof exploits the first order phase transition of the "random cluster" model, which is a probability distribution on graphs that is closely related to the q-state Potts model.Comment: Minor correction

    Properties of Nucleon Resonances by means of a Genetic Algorithm

    Get PDF
    We present an optimization scheme that employs a Genetic Algorithm (GA) to determine the properties of low-lying nucleon excitations within a realistic photo-pion production model based upon an effective Lagrangian. We show that with this modern optimization technique it is possible to reliably assess the parameters of the resonances and the associated error bars as well as to identify weaknesses in the models. To illustrate the problems the optimization process may encounter, we provide results obtained for the nucleon resonances Δ\Delta(1230) and Δ\Delta(1700). The former can be easily isolated and thus has been studied in depth, while the latter is not as well known experimentally.Comment: 12 pages, 10 figures, 3 tables. Minor correction

    The Goldberg-Sachs theorem in linearized gravity

    Get PDF
    The Goldberg-Sachs theorem has been very useful in constructing algebraically special exact solutions of Einstein vacuum equation. Most of the physical meaningful vacuum exact solutions are algebraically special. We show that the Goldberg-Sachs theorem is not true in linearized gravity. This is a remarkable result, which gives light on the understanding of the physical meaning of the linearized solutions.Comment: 6 pages, no figures, LaTeX 2

    Not Just a Theory—The Utility of Mathematical Models in Evolutionary Biology

    Get PDF
    Models have made numerous contributions to evolutionary biology, but misunderstandings persist regarding their purpose. By formally testing the logic of verbal hypotheses, proof-of-concept models clarify thinking, uncover hidden assumptions, and spur new directions of study. thumbnail image credit: modified from the Biodiversity Heritage Librar

    Statistics of Oscillator Strengths in Chaotic Systems

    Full text link
    The statistical description of oscillator strengths for systems like hydrogen in a magnetic field is developed by using the supermatrix nonlinear σ\sigma-model. The correlator of oscillator strengths is found to have a universal parametric and frequency dependence, and its analytical expression is given. This universal expression applies to quantum chaotic systems with the same generality as Wigner-Dyson statistics.Comment: 11 pages, REVTeX3+epsf, two EPS figures. Replaced by the published version. Minor changes

    Evidence of Skyrmion excitations about ν=1\nu =1 in n-Modulation Doped Single Quantum Wells by Inter-band Optical Transmission

    Full text link
    We observe a dramatic reduction in the degree of spin-polarization of a two-dimensional electron gas in a magnetic field when the Fermi energy moves off the mid-point of the spin-gap of the lowest Landau level, ν=1\nu=1. This rapid decay of spin alignment to an unpolarized state occurs over small changes to both higher and lower magnetic field. The degree of electron spin polarization as a function of ν\nu is measured through the magneto-absorption spectra which distinguish the occupancy of the two electron spin states. The data provide experimental evidence for the presence of Skyrmion excitations where exchange energy dominates Zeeman energy in the integer quantum Hall regime at ν=1\nu=1

    Using Astrometry to Deblend Microlensing Events

    Get PDF
    We discuss the prospect of deblending microlensing events by observing astrometric shifts of the lensed stars. Since microlensing searches are generally performed in very crowded fields, it is expected that stars will be confusion limited rather than limited by photon statistics. By performing simulations of events in crowded fields, we find that if we assume a dark lens and that the lensed star obeys a power law luminosity function, n(L)Lβn(L)\propto L^{-\beta}, over half the simulated events show a measurable astrometric shift. Our simulations included 20000 stars in a 256×256256\times 256 Nyquist sampled CCD frame. For β=2\beta=2, we found that 58% of the events were significantly blended (F/Ftot0.9)(F_{\ast}/F_{tot}\leq 0.9), and of those, 73% had a large astrometric shift (0.5pixels)(\geq 0.5 pixels). Likewise, for β=3\beta=3, we found that 85% of the events were significantly blended, and that 85% of those had large shifts. Moreover, the shift is weakly correlated to the degree of blending, suggesting that it may be possible not only to detect the existence of a blend, but also to deblend events statistically using shift information.Comment: 24 pages, 7 postscript Figure
    corecore