55 research outputs found
Stability analysis of agegraphic dark energy in Brans-Dicke cosmology
Stability analysis of agegraphic dark energy in Brans-Dicke theory is
presented in this paper. We constrain the model parameters with the
observational data and thus the results become broadly consistent with those
expected from experiment. Stability analysis of the model without best fitting
shows that universe may begin from an unstable state passing a saddle point and
finally become stable in future. However, with the best fitted model, There is
no saddle intermediate state. The agegraphic dark energy in the model by itself
exhibits a phantom behavior. However, contribution of cold dark matter on the
effective energy density modifies the state of teh universe from phantom phase
to quintessence one. The statefinder diagnosis also indicates that the universe
leaves an unstable state in the past, passes the LCDM state and finally
approaches the sable state in future.Comment: 15 pages, 12 figure
Proceedings of the 3rd Biennial Conference of the Society for Implementation Research Collaboration (SIRC) 2015: advancing efficient methodologies through community partnerships and team science
It is well documented that the majority of adults, children and families in need of evidence-based behavioral health interventionsi do not receive them [1, 2] and that few robust empirically supported methods for implementing evidence-based practices (EBPs) exist. The Society for Implementation Research Collaboration (SIRC) represents a burgeoning effort to advance the innovation and rigor of implementation research and is uniquely focused on bringing together researchers and stakeholders committed to evaluating the implementation of complex evidence-based behavioral health interventions. Through its diverse activities and membership, SIRC aims to foster the promise of implementation research to better serve the behavioral health needs of the population by identifying rigorous, relevant, and efficient strategies that successfully transfer scientific evidence to clinical knowledge for use in real world settings [3]. SIRC began as a National Institute of Mental Health (NIMH)-funded conference series in 2010 (previously titled the âSeattle Implementation Research Conferenceâ; $150,000 USD for 3 conferences in 2011, 2013, and 2015) with the recognition that there were multiple researchers and stakeholdersi working in parallel on innovative implementation science projects in behavioral health, but that formal channels for communicating and collaborating with one another were relatively unavailable. There was a significant need for a forum within which implementation researchers and stakeholders could learn from one another, refine approaches to science and practice, and develop an implementation research agenda using common measures, methods, and research principles to improve both the frequency and quality with which behavioral health treatment implementation is evaluated. SIRCâs membership growth is a testament to this identified need with more than 1000 members from 2011 to the present.ii SIRCâs primary objectives are to: (1) foster communication and collaboration across diverse groups, including implementation researchers, intermediariesi, as well as community stakeholders (SIRC uses the term âEBP championsâ for these groups) â and to do so across multiple career levels (e.g., students, early career faculty, established investigators); and (2) enhance and disseminate rigorous measures and methodologies for implementing EBPs and evaluating EBP implementation efforts. These objectives are well aligned with Glasgow and colleaguesâ [4] five core tenets deemed critical for advancing implementation science: collaboration, efficiency and speed, rigor and relevance, improved capacity, and cumulative knowledge. SIRC advances these objectives and tenets through in-person conferences, which bring together multidisciplinary implementation researchers and those implementing evidence-based behavioral health interventions in the community to share their work and create professional connections and collaborations
Stress-induced variation in evolution: from behavioural plasticity to genetic assimilation
Extreme environments are closely associated with phenotypic evolution, yet the mechanisms behind this relationship are poorly understood. Several themes and approaches in recent studies significantly further our understanding of the importance that stress-induced variation plays in evolution. First, stressful environments modify (and often reduce) the integration of neuroendocrinological, morphological and behavioural regulatory systems. Second, such reduced integration and subsequent accommodation of stress-induced variation by developmental systems enables organismal âmemoryâ of a stressful event as well as phenotypic and genetic assimilation of the response to a stressor. Third, in complex functional systems, a stress-induced increase in phenotypic and genetic variance is often directional, channelled by existing ontogenetic pathways. This accounts for similarity among individuals in stress-induced changes and thus significantly facilitates the rate of adaptive evolution. Fourth, accumulation of phenotypically neutral genetic variation might be a common property of locally adapted and complex organismal systems, and extreme environments facilitate the phenotypic expression of this variance. Finally, stress-induced effects and stress-resistance strategies often persist for several generations through maternal, ecological and cultural inheritance. These transgenerational effects, along with both the complexity of developmental systems and stressor recurrence, might facilitate genetic assimilation of stress-induced effects. Accumulation of phenotypically neutral genetic variance by developmental systems and phenotypic accommodation of stress-induced effects, together with the inheritance of stress-induced modifications, ensure the evolutionary persistence of stressâresponse strategies and provide a link between individual adaptability and evolutionary adaptation
- âŠ