54 research outputs found

    Identification and cardiotropic actions of sulfakinin peptides in the American lobster Homarus americanus

    Get PDF
    In arthropods, a group of peptides possessing a -Y(SO3H)GHM/ LRFamide carboxy-terminal motif have been collectively termed the sulfakinins. Sulfakinin isoforms have been identified from numerous insect species. In contrast, members of this peptide family have thus far been isolated from just two crustaceans, the penaeid shrimp Penaeus monodon and Litopenaeus vannamei. Here, we report the identification of a cDNA encoding prepro-sulfakinin from the American lobster Homarus americanus. Two sulfakinin-like sequences were identified within the open-reading frame of the cDNA. Based on modifications predicted by peptide modeling programs, and on homology to the known isoforms of sulfakinin, particularly those from shrimp, the mature H. americanus sulfakinins were hypothesized to be pEFDEY(SO3H)GHMRFamide (Hoa-SK I) and GGGEY(SO3H)DDY(SO3H)GHLRFamide (Hoa-SK II). Hoa-SK I is identical to one of the previously identified shrimp sulfakinins, while Hoa-SK II is a novel isoform. Exogenous application of either synthetic Hoa-SK I or Hoa-SK II to the isolated lobster heart increased both the frequency and amplitude of spontaneous heart contractions. In preparations in which spontaneous contractions were irregular, both peptides increased the regularity of the heartbeat. Our study provides the first molecular characterization of a sulfakinin-encoding cDNA from a crustacean, as well as the first demonstration of bioactivity for native sulfakinins in this group of arthropods

    Midgut epithelial endocrine cells are a rich source of the neuropeptides APSGFLGMRamide (Cancer borealis tachykinin-related peptide Ia) and GYRKPPFNGSIFamide (Gly\u3csup\u3e1\u3c/sup\u3e-SIFamide) in the crabs Cancer borealis, Cancer magister and Cancer productus

    Get PDF
    Over a quarter of a century ago, Mykles described the presence of putative endocrine cells in the midgut epithelium of the crab Cancer magister (Mykles, 1979). In the years that have followed, these cells have been largely ignored and nothing is known about their hormone content or the functions they play in this species. Here, we used a combination of immunohistochemistry and mass spectrometric techniques to investigate these questions. Using immunohistochemistry, we identified both SIFamide-and tachykinin-related peptide (TRP)-like immunopositive cells in the midgut epithelium of C. magister, as well as in that of Cancer borealis and Cancer productus. In each species, the SIFamide-like labeling was restricted to the anterior portion of the midgut, including the paired anterior midgut caeca, whereas the TRP-like immunoreactivity predominated in the posterior midgut and the posterior midgut caecum. Regardless of location, label or species, the morphology of the immunopositive cells matched that of the putative endocrine cells characterized ultrastructurally by Mykles (Mykles, 1979). Matrix-assisted laser desorption/ ionization-Fourier transform mass spectrometry identified the peptides responsible for the immunoreactivities as GYRKPPFNGSIFamide (Gly 1-SIFamide) and APSGFLGMRamide [Cancer boreatis tachykinin-related peptide Ia (CabTRP Ia)], respectively, both of which are known neuropeptides of Cancer species. Although the function of these midgut-derived peptides remains unknown, we found that both Gly1-SIFamide and CabTRP Ia were released when the midgut was exposed to high-potassium saline. In addition, CabTRP Ia was detectable in the hemolymph of crabs that had been held without food for several days, but not in that of fed animals, paralleling results that were attributed to TRP release from midgut endocrine cells in insects. Thus, one function that midgut-derived CabTRP Ia may play in Cancer species is paracrine/hormonal control of feeding-related behavior, as has been postulated for TRPs released from homologous cells in insects

    Mass spectral characterization of peptide transmitters/hormones in the nervous system and neuroendocrine organs of the American lobster Homarus americanus

    Get PDF
    The American lobster Homarus americanus is a decapod crustacean with both high economic and scientific importance. To facilitate physiological investigations of peptide transmitter/hormone function in this species, we have used matrix-assisted laser desorption/ionization Fourier transform mass spectrometry (MALDI-FTMS), matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOFMS) and nanoscale liquid chromatography coupled to electrospray ionization quadrupole time-of-flight tandem mass spectrometry (nanoLC-ESI-Q-TOF-MS/MS) to elucidate the peptidome present in its nervous system and neuroendocrine organs. In total, 84 peptides were identified, including 27 previously known H. americanus peptides (e.g. VYRKPPFNGSIFamide [Val1-SIFamide]), 23 peptides characterized previously from other decapods, but new to the American lobster (e.g. pQTFQYSRGWTNamide [Arg7-corazonin]), and 34 new peptides de novo sequenced/detected for the first time in this study. Of particular note are a novel B-type allatostatin (TNWNKFQGSWamide) and several novel FMRFamide-related peptides, including an unsulfated analog of sulfakinin (GGGEYDDYGHLRFamide), two myosuppressins (QDLDHVFLRFamide and pQDLDHVFLRFamide), and a collection of short neuropeptide F isoforms (e.g. DTSTPALRLRFamide, and FEPSLRLRFamide). Our data also include the first detection of multiple tachykinin-related peptides in a non-brachyuran decapod, as well as the identification of potential individual-specific variants of orcokinin and orcomyotropin-related peptide. Taken collectively, our results not only expand greatly the number of known H. americanus neuropeptides, but also provide a framework for future studies on the physiological roles played by these molecules in this commercially and scientifically important species

    Intraosseous Schwannoma of the Petrous Apex

    No full text
    Primary neoplasms of the petrous apex are rare and include eosinophilic granuloma, chondroma, chondrosarcoma, chordoma, and schwannoma. We report just the second published case of an intraosseous schwannoma of the petrous apex and are the first to describe the entity using magnetic resonance imaging. By studying the computed tomography and magnetic resonance imaging features of this rare tumor, it is possible to suggest the diagnosis preoperatively
    corecore