3 research outputs found
Involvement of a low molecular weight component(s) in the mechanism of action of the glucocorticoid receptor
[3H]Dexamethasone-receptor complexes from rat liver cytosol preincubated at 0° bind poorly to DNA-cellulose. However, if the steroid-receptor complex is subjected to gel filtration at 0–4° separating it from the low molecular weight components of cytosol, the steroid-receptor complex becomes “activated” enabling its binding to DNA-cellulose. This activation can be prevented if the gel filtration column is first equilibrated with the low molecular weight components of cytosol. In addition, if adrenalectomized rat liver cytosol, in the absence of exogeneous steroid, is subjected to gel filtration the macromolecular fractions separated from the “small molecules” of that cytosol have much reduced binding activity towards [3H]dexamethasone. These results suggest that rat liver cytosol contains a low molecular weight component(s) which maintains the glucocorticoid receptor in a conformational state that allows the binding of dexamethasone. Furthermore, this component must be removed from the steroid-receptor complex before binding to DNA can occur