4 research outputs found

    Conformational ensemble of the poliovirus 3CD precursor observed by MD simulations and confirmed by SAXS: A strategy to expand the viral proteome?

    Get PDF
    The genomes of RNA viruses are relatively small. To overcome the small-size limitation, RNA viruses assign distinct functions to the processed viral proteins and their precursors. This is exemplified by poliovirus 3CD protein. 3C protein is a protease and RNA-binding protein. 3D protein is an RNA-dependent RNA polymerase (RdRp). 3CD exhibits unique protease and RNA-binding activities relative to 3C and is devoid of RdRp activity. The origin of these differences is unclear, since crystal structure of 3CD revealed “beads-on-a-string” structure with no significant structural differences compared to the fully processed proteins. We performed molecular dynamics (MD) simulations on 3CD to investigate its conformational dynamics. A compact conformation of 3CD was observed that was substantially different from that shown crystallographically. This new conformation explained the unique properties of 3CD relative to the individual proteins. Interestingly, simulations of mutant 3CD showed altered interface. Additionally, accelerated MD simulations uncovered a conformational ensemble of 3CD. When we elucidated the 3CD conformations in solution using small-angle X-ray scattering (SAXS) experiments a range of conformations from extended to compact was revealed, validating the MD simulations. The existence of conformational ensemble of 3CD could be viewed as a way to expand the poliovirus proteome, an observation that may extend to other viruses

    Poliovirus RNA-dependent RNA polymerase (3D(pol)): Structural, biochemical, and biological analysis of conserved structural motifs A and B

    Get PDF
    We have constructed a structural model for poliovirus RNA-dependent RNA polymerase (3D(pol)) in complex with a primer-template (sym/sub) and ATP. Residues found in conserved structural motifs A (Asp-238) and B (Asn-297) are involved in nucleotide selection. Asp-238 appears to couple binding of nucleotides with the correct sugar configuration to catalytic efficiency at the active site of the enzyme. Asn-297 is involved in selection of ribonucleoside triphosphates over 2'-dNTPs, a role mediated most likely via a hydrogen bond between the side chain of this residue and the 2'-OH of the ribonucleoside triphosphate. Substitutions at position 238 or 297 of 3D(pol) produced derivatives exhibiting a range of catalytic efficiencies when assayed in vitro for poly(rU) polymerase activity or sym/sub elongation activity. A direct correlation existed between activity on sym/sub and biological phenotypes; a 2.5-fold reduction in polymerase elongation rate produced virus with a temperature-sensitive growth phenotype. These data permit us to propose a detailed, structural model for nucleotide selection by 3D(pol), confirm the biological relevance of the sym/sub system, and provide additional evidence for kinetic coupling between RNA synthesis and subsequent steps in the virus life cycle

    Structure-function relationships of the RNA-dependent RNA polymerase from poliovirus (3Dpol): A surface of the primary oligomerization domain functions in capsid precursor processing and VPg uridylylation

    Get PDF
    The primary oligomerization domain of poliovirus polymerase, 3Dpol, is stabilized by the interaction of the back of the thumb subdomain of one molecule with the back of the palm subdomain of a second molecule, thus permitting the head-to-tail assembly of 3Dpol monomers into long fibers. The interaction of Arg-455 and Arg-456 of the thumb with Asp-339, Ser-341, and Asp-349 of the palm is key to the stability of this interface. We show that mutations predicted to completely disrupt this interface do not produce equivalent growth phenotypes. Virus encoding a polymerase with changes of both residues of the thumb to alanine is not viable; however, virus encoding a polymerase with changes of all three residues of the palm to alanine is viable. Biochemical analysis of 3Dpol derivatives containing the thumb or palm substitutions revealed that these derivatives are both incapable of forming long fibers, suggesting that polymerase fibers are not essential for virus viability. The RNA binding activity, polymerase activity, and thermal stability of these derivatives were equivalent to that of the wild-type enzyme. The two significant differences observed for the thumb mutant were a modest reduction in the ability of the altered 3CD proteinase to process the VP0/VP3 capsid precursor and a substantial reduction in the ability of the altered 3Dpol to catalyze oriI-templated uridylylation of VPg. The defect to uridylylation was a result of the inability of 3CD to stimulate this reaction. Because 3C alone can substitute for 3CD in this reaction, we conclude that the lethal replication phenotype associated with the thumb mutant is caused, in part, by the disruption of an interaction between the back of the thumb of 3Dpol and some undefined domain of 3C. We speculate that this interaction may also be critical for assembly of other complexes required for poliovirus genome replication

    Structural dynamics as a contributor to error-prone replication by an RNA-dependent RNA polymerase

    Get PDF
    RNA viruses encoding high- or low-fidelity RNA-dependent RNA polymerases (RdRp) are attenuated. The ability to predict residues of the RdRp required for faithful incorporation of nucleotides represents an essential step in any pipeline intended to exploit perturbed fidelity as the basis for rational design of vaccine candidates. We used x-ray crystallography, molecular dynamics simulations,NMRspectroscopy, and pre-steady-state kinetics to compare a mutator (H273R) RdRp from poliovirus to the wild-type (WT) enzyme. We show that the nucleotide-binding site toggles between the nucleotide binding-occluded and nucleotide binding-competent states. The conformational dynamics between these states were enhanced by binding to primed template RNA. For the WT, the occluded conformation was favored; for H273R, the competent conformation was favored. The resonance for Met-187 in our NMR spectra reported on the ability of the enzyme to check the correctness of the bound nucleotide. Kinetic experiments were consistent with the conformational dynamics contributing to the established pre-incorporation conformational change and fidelity checkpoint. For H273R, residues comprising the active site spent more time in the catalytically competent conformation and were more positively correlated than the WT. We propose that by linking the equilibrium between the binding-occluded and binding-competent conformations of the nucleotide-binding pocket and other active-site dynamics to the correctness of the bound nucleotide, faithful nucleotide incorporation is achieved. These studies underscore the need to apply multiple biophysical and biochemical approaches to the elucidation of the physical basis for polymerase fidelity
    corecore