720 research outputs found

    Regulation of cytokinesis by spindle-pole bodies

    Get PDF
    Author Posting. © The Author(s), 2006. This is the author's version of the work. It is posted here by permission of Nature Publishing Group for personal use, not for redistribution. The definitive version was published in Nature Cell Biology 8 (2006): 891-893, doi:10.1038/ncb1449.In the fission yeast Schizosaccharomyces pombe, cytokinesis is thought to be controlled by the daughter spindle pole body (SPB) through a regulatory pathway, the Septation Initiation Network (SIN). Here we demonstrate that laser ablation of both but not a single SPB results in cytokinesis failure. Ablation of just the daughter SPB often leads to activation of the SIN on the mother and successful cytokinesis. Thus, either SPB can drive cytokinesis.This work was supported by National Institutes of Health grants GMS 59363 (to A.K.), GMS 69670 (to F.C), and by the Human Frontiers Science Program grant RGP0064 (to AK)

    Mitochondrial and nuclear genes suggest that stony corals are monophyletic but most families of stony corals are not (Order Scleractinia, Class Anthozoa, Phylum Cnidaria)

    Get PDF
    Modern hard corals (Class Hexacorallia; Order Scleractinia) are widely studied because of their fundamental role in reef building and their superb fossil record extending back to the Triassic. Nevertheless, interpretations of their evolutionary relationships have been in flux for over a decade. Recent analyses undermine the legitimacy of traditional suborders, families and genera, and suggest that a non-skeletal sister clade (Order Corallimorpharia) might be imbedded within the stony corals. However, these studies either sampled a relatively limited array of taxa or assembled trees from heterogeneous data sets. Here we provide a more comprehensive analysis of Scleractinia (127 species, 75 genera, 17 families) and various outgroups, based on two mitochondrial genes (cytochrome oxidase I, cytochrome b), with analyses of nuclear genes (ßtubulin, ribosomal DNA) of a subset of taxa to test unexpected relationships. Eleven of 16 families were found to be polyphyletic. Strikingly, over one third of all families as conventionally defined contain representatives from the highly divergent "robust" and "complex" clades. However, the recent suggestion that corallimorpharians are true corals that have lost their skeletons was not upheld. Relationships were supported not only by mitochondrial and nuclear genes, but also often by morphological characters which had been ignored or never noted previously. The concordance of molecular characters and more carefully examined morphological characters suggests a future of greater taxonomic stability, as well as the potential to trace the evolutionary history of this ecologically important group using fossils

    Is decreased bone mineral density associated with development of scoliosis? A bipedal osteopenic rat model

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>An association between adolescent idiopathic scoliosis and osteopenia has been proposed to exist. It is still not clear whether there is such an association and if so, whether osteopenia is a causative factor or a consequence. Our previous pilot studies have suggested the presence of osteopenia in scoliotic animals. The aim of this study was to investigate the development of scoliosis in an unpinealectomized bipedal osteopenic rat model, implementing osteoporosis as a causative factor.</p> <p>Methods</p> <p>Fifty Sprague-Dawley rats were rendered bipedal at the 3<sup>rd </sup>postnatal week and separated into control (25 rats) and heparin (25 rats receiving 1 IU/gr body weight/day) groups. DEXA scans after 4 weeks of heparin administration showed low bone mass in the heparin group. Anteroposterior and lateral x-rays of the surviving 42 animals (19 in heparin and 23 in control groups) were taken under anesthesia at the 40<sup>th </sup>week to evaluate for spinal deformity. Additional histomorphometric analysis was done on spine specimens to confirm the low bone mass in heparin receiving animals. Results of the DEXA scans, histomorphometric analysis and radiological data were compared between the groups.</p> <p>Results</p> <p>Bone mineral densities of rats in the heparin group were significantly lower than the control group as evidenced by both the DEXA scans and histomorphometric analyses. However, the incidence of scoliosis (82% in heparin and 65% in control; p > 0.05) as well as the curve magnitudes (12.1 ± 3.8 in heparin versus 10.1 ± 4.3 degrees in control; p > 0.05) were not significantly different. Osteopenic rats were significantly less kyphotic compared to control specimens (p = 0.001).</p> <p>Conclusions</p> <p>This study has revealed two important findings. One is that bipedality (in the absence of pinealectomy) by itself may be a cause of scoliosis in this animal model. Further studies on animal models need to consider bipedality as an independent factor. Secondly, relative hypokyphosis in osteopenic animals may have important implications. The absence of sagittal plane analyses in previous studies makes comparison impossible, but nonetheless these findings suggest that osteopenia may be important in the development of 3D deformity in adolescent idiopathic scoliosis.</p

    A genomic analysis of disease-resistance genes encoding nucleotide binding sites in Sorghum bicolor

    Get PDF
    A large set of candidate nucleotide-binding site (NBS)-encoding genes related to disease resistance was identified in the sorghum (Sorghum bicolor) genome. These resistance (R) genes were characterized based on their structural diversity, physical chromosomal location and phylogenetic relationships. Based on their N-terminal motifs and leucine-rich repeats (LRR), 50 non-regular NBS genes and 224 regular NBS genes were identified in 274 candidate NBS genes. The regular NBS genes were classified into ten types: CNL, CN, CNLX, CNX, CNXL, CXN, NX, N, NL and NLX. The vast majority (97%) of NBS genes occurred in gene clusters, indicating extensive gene duplication in the evolution of S. bicolor NBS genes. Analysis of the S. bicolor NBS phylogenetic tree revealed two major clades. Most NBS genes were located at the distal tip of the long arms of the ten sorghum chromosomes, a pattern significantly different from rice and Arabidopsis, the NBS genes of which have a random chromosomal distribution

    Mitoxantrone pleurodesis to palliate malignant pleural effusion secondary to ovarian cancer

    Get PDF
    BACKGROUND: Advanced ovarian cancer is the leading non-breast gynaecologic cause of malignant pleural effusion. Aim of this study was to assess the efficacy of mitoxantrone sclerotherapy as a palliative treatment of malignant pleural effusions due to ovarian cancer. METHODS: Sixty women with known ovarian cancer and malignant recurrent symptomatic pleural effusion were treated with chest tube drainage followed by intrapleural mitoxantrone sclerotherapy. Survival, complications and response to pleurodesis were recorded. The data are expressed as the mean ± SEM and the median. RESULTS: The mean age of the entire group was 64 ± 11,24 years. The mean interval between diagnosis of ovarian cancer and presentation of the effusion was 10 ± 2,1 months. Eighteen patients (30%) had pleural effusion as the first evidence of recurrence. The mean volume of effusion drained was 1050 ± 105 ml and chest tube was removed within 4 days in 75% of patients. There were no deaths related to the procedure. Side effects of chemical pleurodesis included fever (37–38,5°C) chest pain, nausea and vomiting. At 30 days among 60 treated effusions, there was an 88% overall response rate, including 41 complete responses and 12 partial responses. At 60 days the overall response was 80% (38 complete responses and 10 partial responses). The mean survival of the entire population was 7,5 ± 1,2 months. CONCLUSIONS: Mitoxantrone is effective in the treatment of malignant pleural effusion secondary to ovarian cancer without causing significant local or systemic toxicity

    Remote monitoring and follow-up of cardiovascular implantable electronic devices in the Netherlands: An expert consensus report of the Netherlands Society of Cardiology

    Get PDF
    Remote monitoring of cardiac implanted electronic devices (CIED: pacemaker, cardiac resynchronisation therapy device and implantable cardioverter defibrillator) has been developed for technical control and follow-up using transtelephonic data transmission. In addition, automatic or patient-triggered alerts are sent to the cardiologist or allied professional who can respond if necessary with various interventions. The advantage of remote monitoring appears obvious in impending CIED failures and suspected symptoms but is less likely in routine follow-up of CIED. For this follow-up the indications, quality of care, cost-effectiveneness and patient satisfaction have to be determined before remote CIED monitoring can be applied in daily practice. Nevertheless remote CIED monitoring is expanding rapidly in the Netherlands without professional agreements about methodology, responsibilities of all the parties involved and that of the device patient, and reimbursement. The purpose of this consensus document on remote CIED monitoring and follow-up is to lay the base for a nationwide, uniform implementation in the Netherlands. This report describes the technical communication, current indications, benefits and limitations of remote CIED monitoring and follow-up, the role of the patient and device manufacturer, and costs and reimbursement. The view of cardiology experts and of other disciplines in conjunction with literature was incorporated in a preliminary series of recommendations. In addition, an overview of the questions related to remote CIED monitoring that need to be answered is given. This consensus document can be used for future guidelines for the Dutch profession

    Sequencing of BAC pools by different next generation sequencing platforms and strategies

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Next generation sequencing of BACs is a viable option for deciphering the sequence of even large and highly repetitive genomes. In order to optimize this strategy, we examined the influence of read length on the quality of Roche/454 sequence assemblies, to what extent Illumina/Solexa mate pairs (MPs) improve the assemblies by scaffolding and whether barcoding of BACs is dispensable.</p> <p>Results</p> <p>Sequencing four BACs with both FLX and Titanium technologies revealed similar sequencing accuracy, but showed that the longer Titanium reads produce considerably less misassemblies and gaps. The 454 assemblies of 96 barcoded BACs were improved by scaffolding 79% of the total contig length with MPs from a non-barcoded library.</p> <p>Assembly of the unmasked 454 sequences without separation by barcodes revealed chimeric contig formation to be a major problem, encompassing 47% of the total contig length. Masking the sequences reduced this fraction to 24%.</p> <p>Conclusion</p> <p>Optimal BAC pool sequencing should be based on the longest available reads, with barcoding essential for a comprehensive assessment of both repetitive and non-repetitive sequence information. When interest is restricted to non-repetitive regions and repeats are masked prior to assembly, barcoding is non-essential. In any case, the assemblies can be improved considerably by scaffolding with non-barcoded BAC pool MPs.</p

    Endothelial function and urine albumin levels among asymptomatic Mexican-Americans and non-Hispanic whites

    Get PDF
    <p>Abstract</p> <p>Background-</p> <p>Mexican-Americans (MA) exhibit increases in various cardiovascular disease (CVD) risk factors compared to non-Hispanic Whites (NHW), yet are reported to have lower CVD mortality rates. Our aim was to help explain this apparent paradox by evaluating endothelial function and urine albumin levels in MA and NHW.</p> <p>Methods-</p> <p>One hundred-five MA and 100 NHW adults were studied by brachial artery flow-mediated dilatation (FMD), blood and urine tests. Participants were studied by ultrasound-determined brachial artery flow-mediated dilatation (FMD), blood and urine tests, at a single visit.</p> <p>Results-</p> <p>Despite higher BMI and triglycerides in MA, MA demonstrated higher FMD than did NHW (9.1 ± 7.3% vs. 7.1 ± 6.3%, p < 0.04). Among MA, urinary albumin was consistently lower in participants with FMD ≥ 7% FMD versus < 7% FMD (p < 0.006). In multivariate analyses in MA men, urinary albumin was inversely related to FMD (r = -0.26, p < 0.05), as were BMI and systolic blood pressure. In MA women, urinary albumin:creatinine ratio was an independent inverse predictor of FMD (p < 0.05 ).</p> <p>Conclusion-</p> <p>To our knowledge, this is the first study to analyze, in asymptomatic adults, the relation of MA and NHW ethnicity to FMD and urine albumin levels. The findings confirm ethnic differences in these important subclinical CVD measures.</p

    Evidence of marine ice-cliff instability in Pine Island Bay from iceberg-keel plough marks.

    Get PDF
    Marine ice-cliff instability (MICI) processes could accelerate future retreat of the Antarctic Ice Sheet if ice shelves that buttress grounding lines more than 800 metres below sea level are lost. The present-day grounding zones of the Pine Island and Thwaites glaciers in West Antarctica need to retreat only short distances before they reach extensive retrograde slopes. When grounding zones of glaciers retreat onto such slopes, theoretical considerations and modelling results indicate that the retreat becomes unstable (marine ice-sheet instability) and thus accelerates. It is thought that MICI is triggered when this retreat produces ice cliffs above the water line with heights approaching about 90 metres. However, observational evidence confirming the action of MICI has not previously been reported. Here we present observational evidence that rapid deglacial ice-sheet retreat into Pine Island Bay proceeded in a similar manner to that simulated in a recent modelling study, driven by MICI. Iceberg-keel plough marks on the sea-floor provide geological evidence of past and present iceberg morphology, keel depth and drift direction. From the planform shape and cross-sectional morphologies of iceberg-keel plough marks, we find that iceberg calving during the most recent deglaciation was not characterized by small numbers of large, tabular icebergs as is observed today, which would produce wide, flat-based plough marks or toothcomb-like multi-keeled plough marks. Instead, it was characterized by large numbers of smaller icebergs with V-shaped keels. Geological evidence of the form and water-depth distribution of the plough marks indicates calving-margin thicknesses equivalent to the threshold that is predicted to trigger ice-cliff structural collapse as a result of MICI. We infer rapid and sustained ice-sheet retreat driven by MICI, commencing around 12,300 years ago and terminating before about 11,200 years ago, which produced large numbers of icebergs smaller than the typical tabular icebergs produced today. Our findings demonstrate the effective operation of MICI in the past, and highlight its potential contribution to accelerated future retreat of the Antarctic Ice Sheet
    corecore