4,394 research outputs found

    Study of the performance and capability of the new ultra-fast 2 GSample/s FADC data acquisition system of the MAGIC telescope

    Full text link
    In February 2007 the MAGIC Air Cherenkov Telescope for gamma-ray astronomy was fully upgraded with an ultra fast 2 GSamples/s digitization system. Since the Cherenkov light flashes are very short, a fast readout can minimize the influence of the background from the light of the night sky. Also, the time structure of the event is an additional parameter to reduce the background from unwanted hadronic showers. An overview of the performance of the new system and its impact on the sensitivity of the MAGIC instrument will be presented.Comment: Contribution to the 30th ICRC, Merida Mexico, July 2007 on behalf of the MAGIC Collaboratio

    Towards Physical Hybrid Systems

    Full text link
    Some hybrid systems models are unsafe for mathematically correct but physically unrealistic reasons. For example, mathematical models can classify a system as being unsafe on a set that is too small to have physical importance. In particular, differences in measure zero sets in models of cyber-physical systems (CPS) have significant mathematical impact on the mathematical safety of these models even though differences on measure zero sets have no tangible physical effect in a real system. We develop the concept of "physical hybrid systems" (PHS) to help reunite mathematical models with physical reality. We modify a hybrid systems logic (differential temporal dynamic logic) by adding a first-class operator to elide distinctions on measure zero sets of time within CPS models. This approach facilitates modeling since it admits the verification of a wider class of models, including some physically realistic models that would otherwise be classified as mathematically unsafe. We also develop a proof calculus to help with the verification of PHS.Comment: CADE 201

    Factorization in graviton interactions

    Full text link
    The study of factorization in the linearized gravity is extended to the graviton scattering processes with a massive scalar particle, with a massless vector boson and also with a graviton. Every transition amplitude is shown to be completely factorized and the physical implications of their common factors are discussed.Comment: 5 pages, Revtex 3.0, SNUTP 93-7

    The O antigen is a critical antigen for the development of a protective immune response to Bordetella parapertussis

    Get PDF
    Despite excellent vaccine coverage in developed countries, whooping cough is a reemerging disease that can be caused by two closely related pathogens, Bordetella pertussis and B. parapertussis. The two are antigenically distinct, and current vaccines, containing only B. pertussis-derived antigens, confer efficient protection against B. pertussis but not against B. parapertussis. B. pertussis does not express the O antigen, while B. parapertussis retains it as a dominant surface antigen. Since the O antigen is a protective antigen for many pathogenic bacteria, we examined whether this factor is a potential protective antigen for B. parapertussis. In a mouse model of infection, immunization with wild-type B. parapertussis elicited a strong antibody response to the O antigen and conferred efficient protection against a subsequent B. parapertussis challenge. However, immunization with an isogenic mutant lacking the O antigen, B. parapertussis Δwbm, induced antibodies that recognized other antigens but did not efficiently mediate opsonophagocytosis of B. parapertussis. The passive transfer of sera raised against B. parapertussis, but not B. parapertussis Δwbm, reduced B. parapertussis loads in the lower respiratory tracts of mice. The addition of 10 ÎŒg of purified B. parapertussis lipopolysaccharide (LPS), which contains the O antigen, but not B. parapertussis Δwbm LPS drastically improved the efficacy of the acellular vaccine Adacel against B. parapertussis. These data suggest that the O antigen is a critical protective antigen of B. parapertussis and its inclusion can substantially improve whooping cough vaccine efficacy against this pathogen.Centro de InvestigaciĂłn y Desarrollo en Fermentaciones Industriale

    Analytic Quantization of the QCD String

    Get PDF
    We perform an analytic semi-classical quantization of the straight QCD string with one end fixed and a massless quark on the other, in the limits of orbital and radial dominant motion. We compare our results to the exact numerical semi-classical quantization. We observe that the numerical semi-classical quantization agrees well with our exact numerical canonical quantization.Comment: RevTeX, 10 pages, 9 figure

    Scale Factor in Double Parton Collisions and Parton Densities in Transverse Space

    Get PDF
    The scale factor σeff\sigma_{eff}, which characterizes double parton collisions in high energy hadron interactions, is a direct manifestation of the distribution of the interacting partons in transverse space, in such a way that different distributions give rise to different values of σeff\sigma_{eff} in different double parton collision processes. We work out the value of the scale factor in a few reactions of interest, in a correlated model of the multi-parton density of the proton recently proposed.Comment: 10 pages, 2 figure

    A double parton scattering background to Higgs boson production at the LHC

    Get PDF
    The experimental capability of recognizing the presence of b quarks in complex hadronic final states has addressed the attention towards final states with b\bar{b} pairs for observing the production of the Higgs boson at the LHC, in the intermediate Higgs mass range.We point out that double parton scattering processes are going to represent a sizeable background to the process.Comment: 9 pages, 2 figure

    Signals for Double Parton Scattering at the Fermilab Tevatron

    Get PDF
    Four double-parton scattering processes are examined at the Fermilab Tevatron energy. With optimized kinematical cuts and realistic parton level simulation for both signals and backgrounds, we find large samples of four-jet and three-jet+one-photon events with signal to background ratio being 20\%-30\%, and much cleaner signals from two-jet+two-photon and two-jet+e+e−e^+e^- final states. The last channel may provide the first unambiguous observation of multiple parton interactions, even with the existing data sample accumulated by the Tevatron collider experiments.Comment: 7 pages, plain LaTeX, 2 tables, no figures. A compressed PS file is available by anonymous ftp at ftp://phenom.physics.wisc.edu/pub/preprints/1996/madph-96-945.ps.

    Teleportation-based realization of an optical quantum two-qubit entangling gate

    Full text link
    In recent years, there has been heightened interest in quantum teleportation, which allows for the transfer of unknown quantum states over arbitrary distances. Quantum teleportation not only serves as an essential ingredient in long-distance quantum communication, but also provides enabling technologies for practical quantum computation. Of particular interest is the scheme proposed by Gottesman and Chuang [Nature \textbf{402}, 390 (1999)], showing that quantum gates can be implemented by teleporting qubits with the help of some special entangled states. Therefore, the construction of a quantum computer can be simply based on some multi-particle entangled states, Bell state measurements and single-qubit operations. The feasibility of this scheme relaxes experimental constraints on realizing universal quantum computation. Using two different methods we demonstrate the smallest non-trivial module in such a scheme---a teleportation-based quantum entangling gate for two different photonic qubits. One uses a high-fidelity six-photon interferometer to realize controlled-NOT gates and the other uses four-photon hyper-entanglement to realize controlled-Phase gates. The results clearly demonstrate the working principles and the entangling capability of the gates. Our experiment represents an important step towards the realization of practical quantum computers and could lead to many further applications in linear optics quantum information processing.Comment: 10 pages, 6 figure
    • 

    corecore