8 research outputs found
Phylogenetic Studies on Red Junglefowl (Gallus gallus) and Native Chicken (Gallus gallus domesticus) in Samar Island, Philippines using the Mitochondrial DNA D-Loop Region
A study was conducted to provide genetic information on the matrilineal phylogeny and genetic diversity of Red junglefowl (RJF) and native chickens in Samar Island, Philippines and to identify the genetic distance between Philippine junglefowls and other RJF species in Southeast Asia using complete mitochondrial DNA D-loop sequences. A total of 5 RJFs and 43 native chickens from Samar Island were included in this study. The results showed that Samar RJFs had a nucleotide diversity of 0.0050±0.0016, which was lower than those of three subspecies of Gallus gallus: G. g. gallus, G. g. spadiceus, and G. g. jabouillei. Meanwhile, Samar native chickens showed lower nucleotide diversity (0.0056±0.0004) than domestic fowls in some neighboring Southeast Asian countries, but higher than those in African and European countries. Phylogenetic analysis showed that 3 haplotypes of Samar RJFs clustered to haplogroup D1, and that 2 haplotypes clustered to haplogroup D2. Chickens native to Samar Island showed 100% resemblance to those in the haplogroup shared by domestic chickens and RJFs. Haplogroups A and B and sub-haplogroups D1 and E1 were the more widely distributed matrilineal lineages in Samar Island. Phylogenetic analysis of Samar RJFs showed that they were closely related to Myanmar RJFs (99.6%), Indonesia RJFs (99.5%), and Thailand RJFs (99.1%). This study is an initial investigation estimating the matrilineal phylogeny and genetic diversity of chicken populations in Samar Island, Philippines for developing strategies aimed at the future conservation and improvement of valuable genetic resources
Population Genetic Structure and Contribution of Philippine Chickens to the Pacific Chicken Diversity Inferred From Mitochondrial DNA
The Philippines is considered one of the biodiversity hotspots for animal genetic resources. In spite of this, population genetic structure, genetic diversity, and past population history of Philippine chickens are not well studied. In this study, phylogeny reconstruction and estimation of population genetic structure were based on 107 newly generated mitochondrial DNA (mtDNA) complete D-loop sequences and 37 previously published sequences of Philippine chickens, consisting of 34 haplotypes. Philippine chickens showed high haplotypic diversity
Fourth Report on Chicken Genes and Chromosomes 2022
International audienc