49 research outputs found

    The Shu complex is a conserved regulator of Rad51 filament formation

    Get PDF
    The budding yeast Shu complex, a heterotetramer of Shu1, Shu2, Csm2, and Psy3, is important for homologous recombination (HR)-mediated chromosome damage repair and was first characterized a decade ago as promoting Rad51-dependent HR in response to replicative stress, but its mechanistic function and conservation in eukaryotes has remained unknown. Here we provide evidence that the Shu complex is evolutionarily conserved throughout eukaryotes, where it is comprised of a clear Shu2 orthologue physically associating with Rad51 paralogues. The Shu complex itself physically interacts with the rest of the HR machinery during DNA damage repair. Finally, we uncover that the mechanistic function of the Shu complex as a stimulatory co-factor of Rad51 filament formation in vitro, likely explaining the in vivo function of the eukaryotic Shu complex in suppressing error-prone repair. Moving forward, our findings provide a framework for studying the function of the human Shu complex, which will have broad importance in our understanding of DNA damage repair

    Ocean Seismic Network Pilot Experiment

    Get PDF
    Author Posting. © American Geophysical Union, 2003. It is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geochemistry Geophysics Geosystems 4 (2003): 1092, doi:10.1029/2002GC000485.The primary goal of the Ocean Seismic Network Pilot Experiment (OSNPE) was to learn how to make high quality broadband seismic measurements on the ocean bottom in preparation for a permanent ocean seismic network. The experiment also had implications for the development of a capability for temporary (e.g., 1 year duration) seismic experiments on the ocean floor. Equipment for installing, operating and monitoring borehole observatories in the deep sea was also tested including a lead-in package, a logging probe, a wire line packer and a control vehicle. The control vehicle was used in three modes during the experiment: for observation of seafloor features and equipment, for equipment launch and recovery, and for power supply and telemetry between ocean bottom units and the ship. The OSNPE which was completed in June 1998 acquired almost four months of continuous data and it demonstrated clearly that a combination of shallow buried and borehole broadband sensors could provide comparable quality data to broadband seismic installations on islands and continents. Burial in soft mud appears to be adequate at frequencies below the microseism peak. Although the borehole sensor was subject to installation noise at low frequencies (0.6 to 50 mHz), analysis of the OSNPE data provides new insights into our understanding of ocean bottom ambient noise. The OSNPE results clearly demonstrate the importance of sediment borne shear modes in ocean bottom ambient noise behavior. Ambient noise drops significantly at high frequencies for a sensor placed just at the sediment basalt interface. At frequencies above the microseism peak, there are two reasons that ocean bottom stations have been generally regarded as noisier than island or land stations: ocean bottom stations are closer to the noise source (the surface gravity waves) and most ocean bottom stations to date have been installed on low rigidity sediments where they are subject to the effects of shear wave resonances. When sensors are placed in boreholes in basement the performance of ocean bottom seismic stations approaches that of continental and island stations. A broadband borehole seismic station should be included in any real-time ocean bottom observatory.This work was sponsored by the National Science Foundation (NSF Grant Numbers: OCE-9522114, OCE-9523541 and OCE-9819439) with additional support from Incorporated Research Institutions for Seismology (IRIS), Joint Oceanographic Institutions, Inc. (JOI Contract No: 12-94), Scripps Institution of Oceanography, a Mellon Grant from Woods Hole Oceanographic Institution, and the Earthquake Research Institute at the University of Tokyo (Visiting Professorship for RAS)

    The utilisation of health research in policy-making: Concepts, examples and methods of assessment

    Get PDF
    The importance of health research utilisation in policy-making, and of understanding the mechanisms involved, is increasingly recognised. Recent reports calling for more resources to improve health in developing countries, and global pressures for accountability, draw greater attention to research-informed policy-making. Key utilisation issues have been described for at least twenty years, but the growing focus on health research systems creates additional dimensions. The utilisation of health research in policy-making should contribute to policies that may eventually lead to desired outcomes, including health gains. In this article, exploration of these issues is combined with a review of various forms of policy-making. When this is linked to analysis of different types of health research, it assists in building a comprehensive account of the diverse meanings of research utilisation. Previous studies report methods and conceptual frameworks that have been applied, if with varying degrees of success, to record utilisation in policy-making. These studies reveal various examples of research impact within a general picture of underutilisation. Factors potentially enhancing utilisation can be identified by exploration of: priority setting; activities of the health research system at the interface between research and policy-making; and the role of the recipients, or 'receptors', of health research. An interfaces and receptors model provides a framework for analysis. Recommendations about possible methods for assessing health research utilisation follow identification of the purposes of such assessments. Our conclusion is that research utilisation can be better understood, and enhanced, by developing assessment methods informed by conceptual analysis and review of previous studies

    Plexin-B2 Negatively Regulates Macrophage Motility, Rac, and Cdc42 Activation

    Get PDF
    Plexins are cell surface receptors widely studied in the nervous system, where they mediate migration and morphogenesis though the Rho family of small GTPases. More recently, plexins have been implicated in immune processes including cell-cell interaction, immune activation, migration, and cytokine production. Plexin-B2 facilitates ligand induced cell guidance and migration in the nervous system, and induces cytoskeletal changes in overexpression assays through RhoGTPase. The function of Plexin-B2 in the immune system is unknown. This report shows that Plexin-B2 is highly expressed on cells of the innate immune system in the mouse, including macrophages, conventional dendritic cells, and plasmacytoid dendritic cells. However, Plexin-B2 does not appear to regulate the production of proinflammatory cytokines, phagocytosis of a variety of targets, or directional migration towards chemoattractants or extracellular matrix in mouse macrophages. Instead, Plxnb2−/− macrophages have greater cellular motility than wild type in the unstimulated state that is accompanied by more active, GTP-bound Rac and Cdc42. Additionally, Plxnb2−/− macrophages demonstrate faster in vitro wound closure activity. Studies have shown that a closely related family member, Plexin-B1, binds to active Rac and sequesters it from downstream signaling. The interaction of Plexin-B2 with Rac has only been previously confirmed in yeast and bacterial overexpression assays. The data presented here show that Plexin-B2 functions in mouse macrophages as a negative regulator of the GTPases Rac and Cdc42 and as a negative regulator of basal cell motility and wound healing

    Living with prostate cancer: randomised controlled trial of a multimodal supportive care intervention for men with prostate cancer

    Get PDF
    Background: Prostate cancer is the most common male cancer in developed countries and diagnosis and treatment carries with it substantial morbidity and related unmet supportive care needs. These difficulties may be amplified by physical inactivity and obesity. We propose to apply a multimodal intervention approach that targets both unmet supportive care needs and physical activity.Methods/design: A two arm randomised controlled trial will compare usual care to a multimodal supportive care intervention &ldquo;Living with Prostate Cancer&rdquo; that will combine self-management with tele-based group peer support. A series of previously validated and reliable self-report measures will be administered to men at four time points: baseline/recruitment (when men are approximately 3-6 months post-diagnosis) and at 3, 6, and 12 months after recruitment and intervention commencement. Social constraints, social support, self-efficacy, group cohesion and therapeutic alliance will be included as potential moderators/mediators of intervention effect. Primary outcomes are unmet supportive care needs and physical activity levels. Secondary outcomes are domain-specific and healthrelated quality of life (QoL); psychological distress; benefit finding; body mass index and waist circumference. Disease variables (e.g. cancer grade, stage) will be assessed through medical and cancer registry records. An economic evaluation will be conducted alongside the randomised trial.Discussion: This study will address a critical but as yet unanswered research question: to identify a populationbased way to reduce unmet supportive care needs; promote regular physical activity; and improve disease-specific and health-related QoL for prostate cancer survivors. The study will also determine the cost-effectiveness of the intervention.<br /

    The Rad51 paralogs facilitate a novel DNA strand specific damage tolerance pathway

    Get PDF
    Accurate DNA replication is essential for genomic stability and cancer prevention. Homologous recombination is important for high-fidelity DNA damage tolerance during replication. How the homologous recombination machinery is recruited to replication intermediates is unknown. Here, we provide evidence that a Rad51 paralog-containing complex, the budding yeast Shu complex, directly recognizes and enables tolerance of predominantly lagging strand abasic sites. We show that the Shu complex becomes chromatin associated when cells accumulate abasic sites during S phase. We also demonstrate that purified recombinant Shu complex recognizes an abasic analog on a double-flap substrate, which prevents AP endo-nuclease activity and endonuclease-induced double-strand break formation. Shu complex DNA binding mutants are sensitive to methyl methanesulfonate, are not chromatin enriched, and exhibit increased mutation rates. We propose a role for the Shu complex in recognizing abasic sites at replication intermediates, where it recruits the homologous recombination machinery to mediate strand specific damage tolerance

    The earliest thymic T cell progenitors sustain B cell and myeloid lineage potential

    Get PDF
    The stepwise commitment from hematopoietic stem cells in the bone marrow to T lymphocyte-restricted progenitors in the thymus represents a paradigm for understanding the requirement for distinct extrinsic cues during different stages of lineage restriction from multipotent to lineage-restricted progenitors. However, the commitment stage at which progenitors migrate from the bone marrow to the thymus remains unclear. Here we provide functional and molecular evidence at the single-cell level that the earliest progenitors in the neonatal thymus had combined granulocyte-monocyte, T lymphocyte and B lymphocyte lineage potential but not megakaryocyte-erythroid lineage potential. These potentials were identical to those of candidate thymus-seeding progenitors in the bone marrow, which were closely related at the molecular level. Our findings establish the distinct lineage-restriction stage at which the T cell lineage-commitment process transits from the bone marrow to the remote thymus. © 2012 Nature America, Inc. All rights reserved
    corecore