944 research outputs found
Total photoproduction cross-section at very high energy
In this paper we apply to photoproduction total cross-section a model we have
proposed for purely hadronic processes and which is based on QCD mini-jets and
soft gluon re-summation. We compare the predictions of our model with the HERA
data as well as with other models. For cosmic rays, our model predicts
substantially higher cross-sections at TeV energies than models based on
factorization but lower than models based on mini-jets alone, without soft
gluons. We discuss the origin of this difference.Comment: 13 pages, 9 figures. Accepted for publication in EPJC. Changes
concern added references, clarifications of the Soft Gluon Resummation method
used in the paper, and other changes requested by the Journal referee which
do not change the results of the original versio
A family of thermostable fungal cellulases created by structure-guided recombination
SCHEMA structure-guided recombination of 3 fungal class II cellobiohydrolases (CBH II cellulases) has yielded a collection of highly thermostable CBH II chimeras. Twenty-three of 48 genes sampled from the 6,561 possible chimeric sequences were secreted by the Saccharomyces cerevisiae heterologous host in catalytically active form. Five of these chimeras have half-lives of thermal inactivation at 63°C that are greater than the most stable parent, CBH II enzyme from the thermophilic fungus Humicola insolens, which suggests that this chimera collection contains hundreds of highly stable cellulases. Twenty-five new sequences were designed based on mathematical modeling of the thermostabilities for the first set of chimeras. Ten of these sequences were expressed in active form; all 10 retained more activity than H. insolens CBH II after incubation at 63°C. The total of 15 validated thermostable CBH II enzymes have high sequence diversity, differing from their closest natural homologs at up to 63 amino acid positions. Selected purified thermostable chimeras hydrolyzed phosphoric acid swollen cellulose at temperatures 7 to 15°C higher than the parent enzymes. These chimeras also hydrolyzed as much or more cellulose than the parent CBH II enzymes in long-time cellulose hydrolysis assays and had pH/activity profiles as broad, or broader than, the parent enzymes. Generating this group of diverse, thermostable fungal CBH II chimeras is the first step in building an inventory of stable cellulases from which optimized enzyme mixtures for biomass conversion can be formulated
The leading particle effect from light quark fragmentation in charm hadroproduction
The asymmetry of and meson production in scattering
observed by the E791 experiment is a typical phenomenon known as the leading
particle effect in charm hadroproducton. We show that the phenomenon can be
explained by the effect of light quark fragmentation into charmed hadrons
(LQF). Meanwhile, the size of the LQF effect is estimated from data of the E791
experiment.
A comparison is made with the estimate of the LQF effect from prompt
like-sign dimuon rate in neutrino experiments. The influence of the LQF effect
on the measurement of nucleon strange distribution asymmetry from charged
current charm production processes is briefly discussed.Comment: 6 latex pages, 1 figure, to appear in EPJ
J/\psi production through resolved photon processes at e+ e- colliders
We consider J/psi photoproduction in e+ e- as well as linear photon
colliders. We find that the process is dominated by the resolved photon
channel. Both the once-resolved and twice-resolved cross-sections are sensitive
to (different combinations of) the colour octet matrix elements. Hence, this
may be a good testing ground for colour octet contributions in NRQCD. On the
other hand, the once-resolved J/psi production cross-section, particularly in a
linear photon collider, is sensitive to the gluon content of the photon. Hence
these cross-sections can be used to determine the parton distribution
functions, especially the gluon distribution, in a photon, if the colour octet
matrix elements are known.Comment: Added a figure on parametrisation dependence of photonic parton
densities and some reference
Soft gluon radiation and energy dependence of total hadronic cross-sections
An impact parameter representation for soft gluon radiation is applied to
obtain both the initial decrease of the total cross-section ()
for proton-proton collisions as well as the later rise of with
energy for both and . The non-perturbative soft part of the
eikonal includes only limited low energy gluon emission and leads to the
initial decrease in the proton-proton cross- section. On the other hand, the
rapid rise in the hard, perturbative jet part of the eikonal is tamed into the
experimentally observed mild increase by soft gluon radiation whose maximum
energy rises slowly with energy.Comment: 30 pages, 6 figures. Version accepted for publication in Physical
Review D. Additional section with explanatory material added making the paper
more self contained and two figures changed to have a complete summary of the
available accelerator dat
Pattern Avoidance in Poset Permutations
We extend the concept of pattern avoidance in permutations on a totally
ordered set to pattern avoidance in permutations on partially ordered sets. The
number of permutations on that avoid the pattern is denoted
. We extend a proof of Simion and Schmidt to show that for any poset , and we exactly classify the posets for which
equality holds.Comment: 13 pages, 1 figure; v2: corrected typos; v3: corrected typos and
improved formatting; v4: to appear in Order; v5: corrected typos; v6: updated
author email addresse
Signature for heavy Majorana neutrinos in hadronic collisions
The production and decay of new possible heavy Majorana neutrinos are
analyzed in hadronic collisions. New bounds on the mixing of these particles
with standard neutrinos are estimated according to a fundamental representation
suggested by grand unified models. A clear signature for these Majorana
neutrinos is given by same-sign dileptons plus a charged weak vector boson in
the final state. We discuss the experimental possibilities for the future Large
Hadron Collider (LHC) at CERN.Comment: Latex2e(epsfig), 12 pages, 8 figures, to appear Physical Review
Probing Supersymmetry With Third-Generation Cascade Decays
The chiral structure of supersymmetric particle couplings involving third
generation Standard Model fermions depends on left-right squark and slepton
mixings as well as gaugino-higgsino mixings. The shapes and intercorrelations
of invariant mass distributions of a first or second generation lepton with
bottoms and taus arising from adjacent branches of SUSY cascade decays are
shown to be a sensitive probe of this chiral structure. All possible cascade
decays that can give rise to such correlations within the MSSM are considered.
For bottom-lepton correlations the distinctive structure of the invariant mass
distributions distinguishes between decays originating from stop or sbottom
squarks through either an intermediate chargino or neutralino. For decay
through a chargino the spins of the stop and chargino are established by the
form of the distribution. When the bottom charge is signed through soft muon
tagging, the structure of the same-sign and opposite-sign invariant mass
distributions depends on a set function of left-right and gaugino-higgsino
mixings, as well as establishes the spins of all the superpartners in the
sequential two-body cascade decay. Tau-lepton and tau-tau invariant mass
distributions arising from MSSM cascade decays are likewise systematically
considered with particular attention to their dependence on tau polarization.
All possible tau-lepton and tau-tau distributions are plotted using a
semi-analytic model for hadronic one-prong taus. Algorithms for fitting tau-tau
and tau-lepton distributions to data are suggested.Comment: 35 pages, 17 .eps figure
The Road Towards the ILC: Higgs, Top/QCD, Loops
The International Linear e+e- Collider (ILC) could go into operation in the
second half of the upcoming decade. Experimental analyses and theory
calculations for the physics at the ILC are currently performed. We review
recent progress, as presented at the LCWS06 in Bangalore, India, in the fields
of Higgs boson physics and top/QCD. Also the area of loop calculations,
necessary to achieve the required theory precision, is included.Comment: 7 pages, 1 figure. Plenary talk given at the LCWS06 March 2006,
Bangalore, India. Top part slightly enlarged, references adde
- …
