1,913 research outputs found
Florida Charter Schools: Hot and Humid with Passing Storms
This report examines the history of Florida's charter school initiative, results to date, and areas where the state can improve
Effect of endurance training on lung function: A one year study
The official published version can be accessed from the link below.Objective: To identify in a follow up study airway changes occurring during the course of a sport season in healthy endurance athletes training in a Mediterranean region.
Methods: Respiratory pattern and function were analysed in 13 healthy endurance trained athletes, either during a maximal exercise test, or at rest and during recovery through respiratory manoeuvres (spirometry and closing volume tests). The exercise test was conducted on three different occasions: during basic endurance training and then during the precompetition and competitive periods.
Results: During the competitive period, a slight but non-clinically significant decrease was found in forced vital capacity (−3.5%, p = 0.0001) and an increase in slope of phase III (+25%, p = 0.0029), both at rest and after exercise. No concomitant reduction in expiratory flow rates was noticed. During maximal exercise there was a tachypnoeic shift over the course of the year (mean (SEM) breathing frequency and tidal volume were respectively 50 (2) cycles/min and 3.13 (0.09) litres during basic endurance training v 55 (3) cycles/min and 2.98 (0.10) litres during the competitive period; p<0.05).
Conclusions: This study does not provide significant evidence of lung function impairment in healthy Mediterranean athletes after one year of endurance training
Spatial distribution of far-infrared rotationally excited CH<sup>+</sup> and OH emission lines in the Orion Bar photodissociation region
Context. The methylidyne cation (CH+) and hydroxyl (OH) are key molecules in the warm interstellar chemistry, but their formation and excitation mechanisms are not well understood. Their abundance and excitation are predicted to be enhanced by the presence of vibrationally excited H2 or hot gas (~500−1000 K) in photodissociation regions (PDRs) with high incident far-ultraviolet (FUV) radiation field. The excitation may also originate in dense gas (>105 cm-3) followed by nonreactive collisions with H2, H, and electrons. Previous observations of the Orion Bar suggest that the rotationally excited CH+ and OH correlate with the excited CO, which is a tracer of dense and warm gas, and that formation pumping contributes to CH+ excitation.Aims. Our goal is to examine the spatial distribution of the rotationally excited CH+ and OH emission lines in the Orion Bar to establish their physical origin and main formation and excitation mechanisms.Methods. We present spatially sampled maps of the CH+ J = 3–2 transition at 119.8 μm and the OH Λ doublet at 84 μm in the Orion Bar over an area of 110″× 110″ with Herschel/PACS. We compare the spatial distribution of these molecules with those of their chemical precursors, C+ , O and H2, and tracers of warm and dense gas (high-
J CO). We assess the spatial variation of the CH+ J = 2–1 velocity-resolved line profile at 1669 GHz with Herschel/HIFI spectrometer observations.Results. The OH and especially CH+ lines correlate well with the high-J CO emission and delineate the warm and dense molecular region at the edge of the Bar. While notably similar, the differences in the CH+ and OH morphologies indicate that CH+ formation and excitation are strongly related to the observed vibrationally excited H2. This, together with the observed broad CH+ line widths, indicates that formation pumping contributes to the excitation of this reactive molecular ion. Interestingly, the peak of the rotationally excited OH 84 μm emission coincides with a bright young object, proplyd 244–440, which shows that OH can be an excellent tracer of UV-irradiated dense gas.Conclusions. The spatial distribution of CH+ and OH revealed in our maps is consistent with previous modeling studies. Both formation pumping and nonreactive collisions in a UV-irradiated dense gas are important CH+ J = 3–2 excitation processes. The excitation of the OH Λ doublet at 84 μm is mainly sensitive to the temperature and density
Rotational excitation of methylidynium (CH+) by a helium atom at high temperature
We aim to obtain accurate rate coefficients for the collisional excitation of
CH+ by He for high gas temperatures. The ab initio coupled-cluster [CCSD(T)]
approximation was used to compute the interaction potential energy. Cross
sections are then derived in the close coupling (CC) approach and rate
coefficients inferred by averaging these cross sections over a
Maxwell-Boltzmann distribution of kinetic energies. Cross sections are
calculated up to 10'000 cm^-1 for J ranging from 0 to 10. Rate coefficients are
obtained at high temperatures up to 2000 K.Comment: 4 pages, 3 figures, table with rate coefficients, accepted for
publication by A&
Sulphur-bearing molecules in diffuse molecular clouds: new results from SOFIA/GREAT and the IRAM 30 m telescope
We have observed five sulphur-bearing molecules in foreground diffuse
molecular clouds lying along the sight-lines to five bright continuum sources.
We have used the GREAT instrument on SOFIA to observe the 1383 GHz transitions of SH towards the star-forming regions W31C,
G29.96-0.02, G34.3+0.1, W49N and W51, detecting foreground absorption towards
all five sources; and the EMIR receivers on the IRAM 30m telescope at Pico
Veleta to detect the HS 1(10)-1(01), CS J=2-1 and SO 3(2)-2(1) transitions.
In nine foreground absorption components detected towards these sources, the
inferred column densities of the four detected molecules showed relatively
constant ratios, with N(SH)/N(HS) in the range 1.1 - 3.0, N(CS)/N(HS)
in the range 0.32 - 0.61, and N(SO)/N(HS) in the range 0.08 - 0.30. The
observed SH/H ratios - in the range (0.5-2.6) - indicate
that SH (and other sulphur-bearing molecules) account for << 1% of the
gas-phase sulphur nuclei. The observed abundances of sulphur-bearing molecules,
however, greatly exceed those predicted by standard models of cold diffuse
molecular clouds, providing further evidence for the enhancement of endothermic
reaction rates by elevated temperatures or ion-neutral drift. We have
considered the observed abundance ratios in the context of shock and turbulent
dissipation region (TDR) models. Using the TDR model, we find that the
turbulent energy available at large scale in the diffuse ISM is sufficient to
explain the observed column densities of SH and CS. Standard shock and TDR
models, however, fail to reproduce the column densities of HS and SO by a
factor of about 10; more elaborate shock models - in which account is taken of
the velocity drift, relative to H, of SH molecules produced by the
dissociative recombination of HS - reduce this discrepancy to a factor
~ 3.Comment: 30 pages, accepted for publication in A&
Towards the noise reduction of piezoelectrical-driven synthetic jet actuators
This paper details an experimental investigation aimed at reducing the noise output of piezoelectrical-driven synthetic jet actuators without compromising peak jet velocity. Specifically, the study considers double-chamber ('back-to-back') actuators for anti-phase noise suppression and corrugated-lobed orifices as a method to enhance turbulent mixing of the jets to suppress jet noise. The study involved the design, manufacture and bench test of interchangeable actuator hardware. Hot-wire anemometry and microphone recordings were employed to acquire velocity and noise measurements respectively for each chamber configuration and orifice plate across a range of excitation frequencies and for a fixed input voltage. The data analysis indicated a 32% noise reduction (20 dBA) from operating a singlechamber, circular orifice SJA to a double-chamber, corrugated-lobed orifice SJA at the Helmholtz resonant frequency. Results also showed there was a small reduction in peak jet velocity of 7% (~3 m/s) between these two cases based on orifices of the same discharge area. Finally, the electrical-to-fluidic power conversion efficiency of the double-chamber actuator was found to be 15% across all orifice designs at the resonant frequency; approximately double the efficiency of a single-chamber actuator. This work has thus demonstrated feasible gains in noise reduction and power efficiency through synthetic jet actuator design
Deux cas d'infection humaine accidentelle par Plasmodium cynomolgi bastianellii : étude clinique et sérologique
CalFUSE v3: A Data-Reduction Pipeline for the Far Ultraviolet Spectroscopic Explorer
Since its launch in 1999, the Far Ultraviolet Spectroscopic Explorer (FUSE)
has made over 4600 observations of some 2500 individual targets. The data are
reduced by the Principal Investigator team at the Johns Hopkins University and
archived at the Multimission Archive at Space Telescope (MAST). The
data-reduction software package, called CalFUSE, has evolved considerably over
the lifetime of the mission. The entire FUSE data set has recently been
reprocessed with CalFUSE v3.2, the latest version of this software. This paper
describes CalFUSE v3.2, the instrument calibrations upon which it is based, and
the format of the resulting calibrated data files.Comment: To appear in PASP; 29 pages, 13 figures, uses aastex, emulateap
Vibrational Study of 13C-enriched C60 Crystals
The infrared (IR) spectrum of solid C60 exhibits many weak vibrational modes.
Symmetry breaking due to 13C isotopes provides a possible route for optically
activating IR-silent vibrational modes. Experimental spectra and a
semi-empirical theory on natural abundance and 13C-enriched single crystals of
C60 are presented. By comparing the experimental results with the theoretical
results, we exclude this isotopic activation mechanism from the explanation for
weakly active fundamentals in the spectra.Comment: Accepted for Phys. Rev. B, typeset in REVTEX v3.0 in LaTeX.
Postscript file including figures is available at
http://insti.physics.sunysb.edu/~mmartin/papers/c13twocol2.ps File with
figures will be e-mailed by reques
Closed-loop separation control over a sharp edge ramp using Genetic Programming
We experimentally perform open and closed-loop control of a separating
turbulent boundary layer downstream from a sharp edge ramp. The turbulent
boundary layer just above the separation point has a Reynolds number
based on momentum thickness. The goal of the
control is to mitigate separation and early re-attachment. The forcing employs
a spanwise array of active vortex generators. The flow state is monitored with
skin-friction sensors downstream of the actuators. The feedback control law is
obtained using model-free genetic programming control (GPC) (Gautier et al.
2015). The resulting flow is assessed using the momentum coefficient, pressure
distribution and skin friction over the ramp and stereo PIV. The PIV yields
vector field statistics, e.g. shear layer growth, the backflow area and vortex
region. GPC is benchmarked against the best periodic forcing. While open-loop
control achieves separation reduction by locking-on the shedding mode, GPC
gives rise to similar benefits by accelerating the shear layer growth.
Moreover, GPC uses less actuation energy.Comment: 24 pages, 24 figures, submitted to Experiments in Fluid
- …
