18,084 research outputs found
Recommended from our members
Analysis of delamination growth with discontinuous finite elements
In this contribution a new finite element is presented for the simulation of delamination growth in thin layered composite materials. The element is based on the solid-like shell element, a volume element that can be used in very thin applications due to a higher order displacement field in thickness direction. The delamination crack is incorporated in this element as a jump of the displacement field by means of the partition of unity method. The kinematics of the element as well as the finite element formulation are described. The performance of the element is demonstrated by means of two examples
Recommended from our members
Computational modelling of cracks in viscoplastic media
A newly developed numerical model is used to simulate propagating cracks in a strain softening viscoplastic medium. The model allows the simulation of displacement discontinuities independently of a finite element mesh. This is possible using the partition of unity concept, in which fracture is treated as a coupled problem, with separate variational equations corresponding to the continuous and discontinuous parts of the displacement field. The equations are coupled through the dependence of the stress field on the strain state. Numerical examples show that allowing displacement discontinuities in a viscoplastic Von Mises material can lead to a failure mode that differs from a continuum-only model
Recommended from our members
Analysis of delamination growth with discontinuous solid-like shell elements
Delamination is one of the most important failure mechanisms in laminates. Normally, it is modelled using interface elements. These elements are placed between two layers that are modelled with continuum elements. The interface elements are equipped with a softening or damage model in order to simulate debonding. This method has some drawbacks, both in a numerical and in a mechanical sense. A recent alternative is to simulate the crack by adding a discontinuous displacement mode to the continuum elements according to the partition of unity method. The elements do not contain the discontinuity prior to cracking, but when the ultimate stress in the bulk material is exceeded, delamination is initiated and additional degrees-of-freedom are activated. Beside this, a slightly different implementation is examined also. A discontinuity is predefined and has an initial dummy stiffness. Delamination is initiated when the tractions in the discontinuity exceed a threshold value. The results of both versions of this partition of unity model are compared mutually and with conventional interface elements by means of two examples
Design Practice in the UK Car Industry: How Coventry University is Addressing the Needs
This paper considers the needs of the UK car industry and identifies specific situations that have serious implications upon design practice. The response at Coventry University to these needs is discussed and our PAKTS model for Design Education introduced
Baroclinic geostrophic adjustment in a rotating circular basin
Baroclinic geostrophic adjustment in a rotating circular basin is investigated in a laboratory study. The adjustment process consists of a linear phase before advective and dissipative effects dominate the response for longer time. This work describes in detail the hydrodynamics and energetics of the linear phase of the adjustment process of a two-layer fluid from an initial step height discontinuity in the density interface DeltaH to a final response consisting of both geostrophic and fluctuating components. For a forcing lengthscale r(f) equal to the basin radius R-0, the geostrophic component takes the form of a basin-scale double gyre while the fluctuating component is composed of baroclinic Kelvin and Poincare waves. The Burger number S=R/r(f) (R is the baroclinic Rossby radius of deformation) and the dimensionless forcing amplitude epsilon = DeltaH/H-1 (H-1 is the upper-layer depth) characterize the response of the adjustment process. In particular, comparisons between analytical solutions and laboratory measurements indicate that for time tau: 1 < tau < S-1 (tau is time scaled by the inertial period 2pi/f), the basin-scale double gyre is established, followed by a period where the double gyre is sustained, given by S-1 < tau < 2epsilon(-1) for a moderate forcing and S-1 < tau < tau(D) for a weak forcing (tau(D) is the dimensionless dissipation timescale due to Ekman damping). The analytical solution is used to calculate the energetics of the baroclinic geostrophic adjustment. The results are found to compare well with previous studies with partitioning of energy between the geostrophic and fluctuating components exhibiting a strong dependence on S. Finally, the outcomes of this study are considered in terms of their application to lakes influenced by the rotation of the Earth
Doppler lidar observations of sensible heat flux and intercomparisons with a ground-based energy balance station and WRF model output
This is an open access article - Copyright @ 2009 E. Schweizerbart'sche VerlagsbuchhandlungDuring the Convective and Orographically induced Precipitation Study (COPS), a scanning Doppler lidar was deployed at Achern, Baden-Wüttemberg, Germany from 13th June to 16th August 2007. Vertical velocity profiles ('rays') through the boundary layer were measured every 3 seconds with vertical profiles of horizontal wind velocity being derived from performing azimuth scans every 30 minutes. During Intense Observation Periods radiosondes were launched from the site. In this paper, a case study of convective boundary layer development on 15th July 2007 is investigated. Estimates of eddy dissipation rate are made from the vertically pointing lidar data and used as one input to the velocity-temperature co-variance equation to estimate sensible heat flux. The sensible heat flux values calculated from Doppler lidar data are compared with a surface based energy balance station and output from the Weather Research and Forecasting (WRF) model.Funding is obtained from NER
Autism with intellectual disability is associated with increased levels of maternal cytokines and chemokines during gestation.
Immune abnormalities have been described in some individuals with autism spectrum disorders (ASDs) as well as their family members. However, few studies have directly investigated the role of prenatal cytokine and chemokine profiles on neurodevelopmental outcomes in humans. In the current study, we characterized mid-gestational serum profiles of 22 cytokines and chemokines in mothers of children with ASD (N=415), developmental delay (DD) without ASD (N=188), and general population (GP) controls (N=428) using a bead-based multiplex technology. The ASD group was further divided into those with intellectual disabilities (developmental/cognitive and adaptive composite score<70) (ASD+ID, N=184) and those without (composite score⩾70) (ASD-noID, N=201). Levels of cytokines and chemokines were compared between groups using multivariate logistic regression analyses, adjusting for maternal age, ethnicity, birth country and weight, as well as infant gender, birth year and birth month. Mothers of children with ASD+ID had significantly elevated mid-gestational levels of numerous cytokines and chemokines, such as granulocyte macrophage colony-stimulating factor, interferon-γ, interleukin-1α (IL-1α) and IL-6, compared with mothers of children with either ASD-noID, those with DD, or GP controls. Conversely, mothers of children with either ASD-noID or with DD had significantly lower levels of the chemokines IL-8 and monocyte chemotactic protein-1 compared with mothers of GP controls. This observed immunologic distinction between mothers of children with ASD+ID from mothers of children with ASD-noID or DD suggests that the intellectual disability associated with ASD might be etiologically distinct from DD without ASD. These findings contribute to the ongoing efforts toward identification of early biological markers specific to subphenotypes of ASD
The effect of a 6-month cardiac rehabilitation programme on serum lipoproteins and apoproteins A1 and B and lipoprotein a
One hundred and forty-two cardiac rehabilitation patients were followed up over a p.eriod of 6 months and the percentage change over time was recorded for various lipid fractions including apoprotein AI (apo AI), apoprotein B (apo B) and lipoprotein a (Lp(a)). Data were analysed to see if improvement in peak oxygen consumption (V2) or changes in body weight were related to any of the above. A significant percentage change was found for peak Vo2, ventilatory threshold, highdensity lipoprotein cholesterol (HDLC) and triglyceride levels, total cholesterol (TC)/HDL ratio, apo AI, apo A/apo B ratio and Lp(a). Multiple regression analysis showed that alterations in the lipid fractions were not related to changes in physical fitness except in the case of TC levels which dropped independently of other measures. On multivariate analysis, Lp(a) correlated positively with both the Broca index and the use of drugs ofthe fibrate series.S Afr Med J1993; 83: 315-31
- …