11 research outputs found

    Effect of self-organization and properties of aqueous disperse systems based on the moss peptide PpCLE2 in a low concentration range on the growth of Arabidopsis thaliana roots

    Get PDF
    © 2017, Springer Science+Business Media, LLC, part of Springer Nature. It is shown for the first time using a complex of physicochemical methods (dynamic and electrophoretic light scattering, conductometry, pH-metry) that below a threshold concentration of 1.0•10 –7 mol L –1 the disperse phase of the aqueous systems based on moss peptide PpCLE2 undergoes the domain—nanoassociate rearrangement, which affects the nonmonotonic concentration dependences of the specific electrical conductivity and pH and can result in a multidirectional profile of the dependence of the growth of the primary and lateral roots of the Arabidopsis thaliana seed plant in the range of calculated concentrations from 1.0•10 –6 to 1.0•10 –12 mol L –1

    Effect of self-organization and properties of aqueous disperse systems based on the moss peptide PpCLE2 in a low concentration range on the growth of Arabidopsis thaliana roots

    No full text
    © 2017, Springer Science+Business Media, LLC, part of Springer Nature. It is shown for the first time using a complex of physicochemical methods (dynamic and electrophoretic light scattering, conductometry, pH-metry) that below a threshold concentration of 1.0•10 –7 mol L –1 the disperse phase of the aqueous systems based on moss peptide PpCLE2 undergoes the domain—nanoassociate rearrangement, which affects the nonmonotonic concentration dependences of the specific electrical conductivity and pH and can result in a multidirectional profile of the dependence of the growth of the primary and lateral roots of the Arabidopsis thaliana seed plant in the range of calculated concentrations from 1.0•10 –6 to 1.0•10 –12 mol L –1

    Sintered iron filters for the fine purification of diesel fuel

    No full text

    Effect of self-organization and properties of aqueous disperse systems based on the moss peptide PpCLE2 in a low concentration range on the growth of Arabidopsis thaliana roots

    No full text
    © 2017, Springer Science+Business Media, LLC, part of Springer Nature. It is shown for the first time using a complex of physicochemical methods (dynamic and electrophoretic light scattering, conductometry, pH-metry) that below a threshold concentration of 1.0•10 –7 mol L –1 the disperse phase of the aqueous systems based on moss peptide PpCLE2 undergoes the domain—nanoassociate rearrangement, which affects the nonmonotonic concentration dependences of the specific electrical conductivity and pH and can result in a multidirectional profile of the dependence of the growth of the primary and lateral roots of the Arabidopsis thaliana seed plant in the range of calculated concentrations from 1.0•10 –6 to 1.0•10 –12 mol L –1

    Effect of self-organization and properties of aqueous disperse systems based on the moss peptide PpCLE2 in a low concentration range on the growth of Arabidopsis thaliana roots

    No full text
    © 2017, Springer Science+Business Media, LLC, part of Springer Nature. It is shown for the first time using a complex of physicochemical methods (dynamic and electrophoretic light scattering, conductometry, pH-metry) that below a threshold concentration of 1.0•10 –7 mol L –1 the disperse phase of the aqueous systems based on moss peptide PpCLE2 undergoes the domain—nanoassociate rearrangement, which affects the nonmonotonic concentration dependences of the specific electrical conductivity and pH and can result in a multidirectional profile of the dependence of the growth of the primary and lateral roots of the Arabidopsis thaliana seed plant in the range of calculated concentrations from 1.0•10 –6 to 1.0•10 –12 mol L –1
    corecore