68 research outputs found
A guanosine 5′-triphosphate-dependent protein kinase is localized in the outer envelope membrane of pea chloroplasts
A guanosine 5-triphosphate (GTP)-dependent protein kinase was detected in preparations of outer chloroplast envelope membranes of pea (Pisum sativum L.) chloroplasts. The protein-kinase activity was capable of phosphorylating several envelope-membrane proteins. The major phosphorylated products were 23- and 32.5-kilo-dalton proteins of the outer envelope membrane. Several other envelope proteins were labeled to a lesser extent. Following acid hydrolysis of the labeled proteins, most of the label was detected as phosphoserine with only minor amounts detected as phosphothreonine. Several criteria were used to distinguish the GTP-dependent protein kinase from an ATP-dependent kinase also present in the outer envelope membrane. The ATP-dependent kinase phosphorylated a very different set of envelope-membrane proteins. Heparin inhibited the GTP-dependent kinase but had little effect upon the ATP-dependent enzyme. The GTP-dependent enzyme accepted phosvitin as an external protein substrate whereas the ATP-dependent enzyme did not. The outer membrane of the chloroplast envelope also contained a phosphotransferase capable of transferring labeled phosphate from [-32P]GTP to ADP to yield (-32P]ATP. Consequently, addition of ADP to a GTP-dependent protein-kinase assay resulted in a switch in the pattern of labeled products from that seen with GTP to that typically seen with ATP
Two-Loop Helicity Amplitudes for Quark-Gluon Scattering in QCD and Gluino-Gluon Scattering in Supersymmetric Yang-Mills Theory
We present the two-loop QCD helicity amplitudes for quark-gluon scattering,
and for quark-antiquark annihilation into two gluons. These amplitudes are
relevant for next-to-next-to-leading order corrections to (polarized) jet
production at hadron colliders. We give the results in the `t Hooft-Veltman and
four-dimensional helicity (FDH) variants of dimensional regularization. The
transition rules for converting the amplitudes between the different variants
are much more intricate than for the previously discussed case of gluon-gluon
scattering. Summing our two-loop expressions over helicities and colors, and
converting to conventional dimensional regularization, gives results in
complete agreement with those of Anastasiou, Glover, Oleari and Tejeda-Yeomans.
We describe the amplitudes for 2 to 2 scattering in pure N=1 supersymmetric
Yang-Mills theory, obtained from the QCD amplitudes by modifying the color
representation and multiplicities, and verify supersymmetry Ward identities in
the FDH scheme.Comment: 77 pages. v2: corrected errors in eqs. (3.7) and (3.8) for one-loop
assembly; remaining results unaffecte
Complete Order alpha_s^3 Results for e^+ e^- to (gamma,Z) to Four Jets
We present the next-to-leading order (O(alpha_s^3)) perturbative QCD
predictions for e^+e^- annihilation into four jets. A previous calculation
omitted the O(alpha_s^3) terms suppressed by one or more powers of 1/N_c^2,
where N_c is the number of colors, and the `light-by-glue scattering'
contributions. We find that all such terms are uniformly small, constituting
less than 10% of the correction. For the Durham clustering algorithm, the
leading and next-to-leading logarithms in the limit of small jet resolution
parameter y_{cut} can be resummed. We match the resummed results to our
fixed-order calculation in order to improve the small y_{cut} prediction.Comment: Latex2e, 17 pages with 5 encapsulated figures. Note added regarding
subsequent related work. To appear in Phys. Rev.
Supersymmetric Regularization, Two-Loop QCD Amplitudes and Coupling Shifts
We present a definition of the four-dimensional helicity (FDH) regularization
scheme valid for two or more loops. This scheme was previously defined and
utilized at one loop. It amounts to a variation on the standard 't
Hooft-Veltman scheme and is designed to be compatible with the use of helicity
states for "observed" particles. It is similar to dimensional reduction in that
it maintains an equal number of bosonic and fermionic states, as required for
preserving supersymmetry. Supersymmetry Ward identities relate different
helicity amplitudes in supersymmetric theories. As a check that the FDH scheme
preserves supersymmetry, at least through two loops, we explicitly verify a
number of these identities for gluon-gluon scattering (gg to gg) in
supersymmetric QCD. These results also cross-check recent non-trivial two-loop
calculations in ordinary QCD. Finally, we compute the two-loop shift between
the FDH coupling and the standard MS-bar coupling, alpha_s. The FDH shift is
identical to the one for dimensional reduction. The two-loop coupling shifts
are then used to obtain the three-loop QCD beta function in the FDH and
dimensional reduction schemes.Comment: 44 pages, minor corrections and clarifications include
QCD Corrections to Four-jet Production and Three-jet Structure in e+ e- annihilation
We report on the general purpose numerical program MERCUTIO, which can be
used to calculate any infrared safe four-jet quantity in electron-positron
annihilation at next-to-leading order. The program is based on the dipole
formalism and uses a remapping of phase-space in order to improve the
efficiency of the Monte Carlo integration. Numerical results are given for the
four-jet fraction and the D-parameter. These results are compared with already
existing ones in the literature and serve as a cross-check. The program can
also be used to investigate the internal structure of three-jet events at NLO.
We give results for previously uncalculated observables: the jet broadening
variable and the softest-jet explanarity.Comment: 28 pages, Latex, final versio
Recommended from our members
Ancestral diversity improves discovery and fine-mapping of genetic loci for anthropometric traits - the Hispanic/Latino Anthropometry Consortium
Hispanic/Latinos have been underrepresented in genome-wide association studies (GWAS) for anthropometric traits despite their notable anthropometric variability, ancestry proportions, and high burden of growth stunting and overweight/obesity. To address this knowledge gap, we analyzed densely-imputed genetic data in a sample of Hispanic/Latino adults to identify and fine-map genetic variants associated with body mass index (BMI), height, and BMI-adjusted waist-to-hip ratio (WHRadjBMI). We conducted a GWAS of 18 studies/consortia as part of the Hispanic/Latino Anthropometry (HISLA) Consortium (Stage 1, n=59,771) and generalized our findings in 9 additional studies (HISLA Stage 2, n=10,538). We conducted a trans-ancestral GWAS with summary statistics from HISLA Stage 1 and existing consortia of European and African ancestries. In our HISLA Stage 1+2 analyses, we discovered one BMI locus, as well as two BMI signals and another height signal each within established anthropometric loci. In our trans-ancestral meta-analysis, we discovered three BMI loci, one height locus, and one WHRadjBMI locus. We also identified three secondary signals for BMI, 28 for height, and two for WHRadjBMI in established loci. We show that 336 known BMI, 1,177 known height, and 143 known WHRadjBMI (combined) SNPs demonstrated suggestive transferability (nominal significance and effect estimate directional consistency) in Hispanic/Latino adults. Of these, 36 BMI, 124 height, and 11 WHRadjBMI SNPs were significant after trait-specific Bonferroni correction. Trans-ancestral meta-analysis of the three ancestries showed a small-to-moderate impact of uncorrected population stratification on the resulting effect size estimates. Our findings demonstrate that future studies may also benefit from leveraging diverse ancestries and differences in linkage disequilibrium patterns to discover novel loci and additional signals with less residual population stratification
- …